Pacific Rim Workshop in Geometric Analysis, Vancouver, Summer 2010
环太平洋几何分析研讨会,温哥华,2010 年夏季
基本信息
- 批准号:1016317
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-05-01 至 2011-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Pacific Rim Workshop on Geometric Analysis will be held at UBC/PIMS, Vancouver, Canada, July 20-30, 2010. The first week will be a summer school, and the second week will be a research-oriented conference. This workshop/conference will bring together experts from all over the world in geometric analysis. The core areas of concentration will be (i) Geometric flows: Ricci flow, Mean Curvature Flow, Willmore Flow, (ii) K\"ahler-Einstein metrics, constant scalar curvature metrics and K\"ahler-Ricci flow, (iii) Mathematical General Relativity Theory, (iv) Manifolds with positive curvature, and (v) Minimal submanifolds. These are currently some of the most active research areas in geometric analysis. There are broader applications of many of these topics to other areas of mathematics, such as algebraic geometry, and also applications to related physical fields, such as general relativity and string theory.This conference will have a significant educational component. The first week will consist entirely of mini-courses geared towards graduate students. The aim is to give sufficient background in the main scientific areas, so that the participants will be able to follow the more recent developments. These will be presented in the second week, where there will be 16-18 research-level talks. The conference will be advertised though PRIMA and through a conference website in order to build as diverse an audience as possible. The organizing committee will encourage applications from female mathematicians. Lecture notes from the mini-courses and workshop will be posted on the conference webpage, and will be widely disseminated to mathematicians at all levels. The funding from the NSF will be used to provide travel and lodging expenses for fifteen workshop participants from the United States. Preference will be given to graduate students, postdocs, and junior faculty who do not have their own travel funding sources.
环太平洋地区几何分析研讨会将于2010年7月20-30日在加拿大温哥华UBC/PIMS举行。第一周将是暑期学校,第二周将是研究型会议。这次研讨会/会议将汇集来自世界各地的几何分析专家。集中的核心领域将是(i)几何流:里奇流,平均曲率流,Willmore流,(ii)K\“ahler-Einstein度量,常数标量曲率度量和K\“ahler-Ricci流,(iii)数学广义相对论,(iv)具有正曲率的流形,以及(v)极小子流形。这些是目前几何分析中最活跃的研究领域之一。这些主题在数学的其他领域有更广泛的应用,例如代数几何,也可以应用到相关的物理领域,例如广义相对论和弦理论。这次会议将有重要的教育组成部分。第一周将完全由面向研究生的迷你课程组成。目的是提供主要科学领域的充分背景,以便与会者能够跟踪最新的发展。这些将在第二周提交,届时将有16-18个研究级会谈。会议将通过相关中间人所在地办法和会议网站进行宣传,以便尽可能吸引不同的受众。组委会将鼓励女性数学家提出申请。小型课程和讲习班的讲义将张贴在会议网页上,并将广泛分发给各级数学家。国家科学基金会的资金将用于为来自美国的15名讲习班参加者提供旅费和住宿费。优先考虑研究生,博士后和没有自己的旅行资金来源的初级教师。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeff Viaclovsky其他文献
Degenerations of LeBrun twistor spaces
勒布伦扭转空间的简并
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Nobuhiro Honda;Jeff Viaclovsky;N. Honda;N. Honda - 通讯作者:
N. Honda
Conformal symmetries of self-dual hyperbolic monopole metrics
自对偶双曲单极子度量的共形对称性
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Nobuhiro Honda;Jeff Viaclovsky - 通讯作者:
Jeff Viaclovsky
Jeff Viaclovsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeff Viaclovsky', 18)}}的其他基金
Southern California Geometric Analysis Seminar, Winter 2023
南加州几何分析研讨会,2023 年冬季
- 批准号:
2236605 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Differential Equations and the Geometry of Manifolds
微分方程和流形几何
- 批准号:
2105478 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Differential Equations and the Geometry of Manifolds
微分方程和流形几何
- 批准号:
1811096 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
Differential Equations and the Geometry of Manifolds
微分方程和流形几何
- 批准号:
1405725 - 财政年份:2014
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
Differential Equations and the Geometry of Manifolds
微分方程和流形几何
- 批准号:
1105187 - 财政年份:2011
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Differential equations and the geometry of manifolds
微分方程和流形几何
- 批准号:
0804042 - 财政年份:2008
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
Differential equations and the geometry of manifolds
微分方程和流形几何
- 批准号:
0735928 - 财政年份:2007
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Differential equations and the geometry of manifolds
微分方程和流形几何
- 批准号:
0503506 - 财政年份:2005
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Compactness of Critical Metrics and Some Fully Nonlinear Equations in Conformal Geometry
共形几何中关键度量的紧性和一些完全非线性方程
- 批准号:
0202477 - 财政年份:2002
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
- 批准号:
9902380 - 财政年份:1999
- 资助金额:
$ 2.4万 - 项目类别:
Fellowship Award
相似国自然基金
PKD致病基因PRRT2通过RIM-BP1调控突触囊泡释放的分子机制研究
- 批准号:81701281
- 批准年份:2017
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
支架蛋白RIM1调控NMDA受体质膜插入的机制及功能研究
- 批准号:81471125
- 批准年份:2014
- 资助金额:80.0 万元
- 项目类别:面上项目
白念珠菌Rim101蛋白与依赖铁基因相互作用的研究
- 批准号:30570096
- 批准年份:2005
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Establishment of a Tumor Immune Microenvironment Prediction Model and a Diagnosis Algorithm for Rim Enhancement Using Breast MRI
乳腺MRI肿瘤免疫微环境预测模型及边缘增强诊断算法的建立
- 批准号:
23K14856 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RIM法を応用したPIV流速計測による河川の乱流輸送過程と樹林化メカニズムの解明
利用 RIM 方法的 PIV 速度测量阐明河流中的湍流传输过程和造林机制
- 批准号:
22KJ1958 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Pacific Rim Mathematical Association 2022 Congress
环太平洋数学协会 2022 年大会
- 批准号:
2231666 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Areal typology toward understanding the formation process of endangered languages in the North Pacific Rim
区域类型学有助于了解北太平洋沿岸濒危语言的形成过程
- 批准号:
22H00657 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
MRI paramagnetic rim lesions as biomarkers and agents of neurodegeneration in multiple sclerosis
MRI 顺磁边缘病变作为多发性硬化症神经变性的生物标志物和代理
- 批准号:
10595617 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
HaloDrive - Rim Driven Electric Propulsion System
HaloDrive - 轮圈驱动电力推进系统
- 批准号:
10037042 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
BEIS-Funded Programmes
Pacific Rim Ocean Data Mobilization and Technology (PRODIGY)
环太平洋数据移动和技术(PRODIGY)
- 批准号:
555411-2021 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Collaborative Research and Training Experience
MRI paramagnetic rim lesions as biomarkers and agents of neurodegeneration in multiple sclerosis
MRI 顺磁边缘病变作为多发性硬化症神经变性的生物标志物和代理
- 批准号:
10429634 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Two-dimensional sheets with front and back faces constructed from rim-differentiated regular polygonal macrocyclic compounds
由边缘分化正多边形大环化合物构成的具有正面和背面的二维片材
- 批准号:
22K19063 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)