Differential Equations and the Geometry of Manifolds
微分方程和流形几何
基本信息
- 批准号:2105478
- 负责人:
- 金额:$ 49.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The focus of this project is to better understand the relationship between the geometry and the topology of a space. The latter, topology, is the study of properties of a space that are invariant under continuous stretching or bending of a space. Geometry involves understanding distances. For example, if the surface of our planet is viewed as a sphere one can measure distances on it by computing arclengths of great circles. One can imagine deforming the Earth by pushing in or pulling on small or large regions to warp the geometry. There are many ways to make this notion precise in terms of minimizing a total energy measurement. This idea can be generalized to higher dimensional objects called manifolds, which are generalized versions of the surface of our planet. For example, the space that we live in is three-dimensional, and if one includes time, we are in a four-dimensional universe. In order to understand these types of higher-dimensional objects, one attempts to find the best way to measure distances on them that use the least amount of energy, and maximize the symmetries of the space. These projects will define appropriate energies on such spaces, and seek out the important optimal geometries that minimize the total energy. The PI will participate in mentoring, outreach and organization of conferences in the mathematics community.In more technical terms, this research will use solutions of partial differential equations, which are geometric in origin to study properties of differentiable manifolds. The main areas of concentration of the PI's research are the study of gravitational instantons in dimension four (both compact and complete non-compact), the study of collapsing sequences Ricci-flat metrics on K3 surfaces, the construction of a global moduli space of scalar-flat Kahler ALE metrics, and the study of the orbifold Yamabe problem. In ongoing work with Hein, Sun, and Zhang, the PI has constructed new examples of Ricci-flat metrics on K3 surfaces, which collapse to an interval, with Heisenberg nilmanifolds occurring as fibers in the regular collapsing regions. In this case, gravitational instantons of type ALH-star bubble off, and it is of interest to have a better understanding of this class of instantons. In joint work with Chen and Zhang, the PI has constructed examples of collapsing sequences of Ricci-flat metrics on the K3 surface that has both ALG and ALG-star bubbles, and it is also of interest to have a better understanding of these types of instantons, which have quadratic volume growth. In joint work with Han, the PI will conduct further study of the moduli space of scalar-flat Kahler ALE metrics for certain groups at infinity and finding new examples of such metrics on non-Artin components of deformations of isolated quotient singularities. In joint work with Ju, the PI is studying compactness and existence results for the orbifold Yamabe problem, which differs substantially from the smooth case due to the failure of the positive mass theorem for ALE metrics. Finally, the PI is committed to integrating research and education and cultivating intellectual development on many levels.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目的重点是更好地理解空间几何和拓扑之间的关系。后者,拓扑学,是研究空间在连续拉伸或弯曲下不变的性质。几何学涉及到理解距离。例如,如果我们把地球表面看作一个球体,就可以通过计算大圆的弧长来测量其上的距离。人们可以想象通过推入或拉动小区域或大区域来扭曲几何图形来使地球变形。有许多方法可以使这一概念在最小化总能量测量方面变得精确。这个想法可以推广到称为流形的更高维的物体上,流形是我们星球表面的广义版本。例如,我们生活的空间是三维的,如果包括时间,我们就处于一个四维的宇宙中。为了理解这些类型的高维物体,人们试图找到最好的方法来测量它们上的距离,使用最少的能量,并最大化空间的对称性。这些项目将在这样的空间上定义适当的能量,并寻找使总能量最小的重要的最佳几何形状。PI将参与数学界的指导、推广和会议的组织。在更专业的术语中,这项研究将使用偏微分方程解,它的起源是几何的,以研究可微流形的性质。PI的主要研究领域是四维(紧致和完全非紧致)引力瞬子的研究,K3曲面上折叠序列Ricci平坦度规的研究,标量平坦Kahler Ale度规的整体模空间的构造,以及Orbilold Yamabe问题的研究。在与Hein,Sun和Zhang正在进行的工作中,PI在K3曲面上构造了Ricci平坦度量的新例子,K3曲面收缩成区间,Heisenberg零流形作为纤维出现在规则的收缩区域中。在这种情况下,ALH-STAR类型的引力瞬子起泡,对这类瞬子有更好的了解是有意义的。在与Chen和Zhang的合作中,PI已经在同时具有ALG和ALG-STAR气泡的K3表面上构造了Ricci平坦度规的坍塌序列的例子,而且更好地理解这些类型的瞬子也是有趣的,它们具有二次体积增长。在与韩的合作中,PI将对某些群在无穷远处的标量平坦Kahler ale度量的模空间进行进一步的研究,并在孤立商奇点的变形的非Artin分量上寻找此类度量的新例子。在与Ju的联合工作中,PI正在研究Orbilold Yamabe问题的紧性和存在性结果,由于ALE度量的正质量定理的失败,该问题与光滑情况有本质的不同。最后,PI致力于将研究和教育相结合,并在多个层面上培养智力发展。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Collapsing Ricci-flat metrics on elliptic K3 surfaces
- DOI:10.4310/cag.2020.v28.n8.a9
- 发表时间:2019-10
- 期刊:
- 影响因子:0.7
- 作者:Gao Chen;Jeff A. Viaclovsky;Ruobing Zhang
- 通讯作者:Gao Chen;Jeff A. Viaclovsky;Ruobing Zhang
Nilpotent structures and collapsing Ricci-flat metrics on the K3 surface
- DOI:10.1090/jams/978
- 发表时间:2018-07
- 期刊:
- 影响因子:3.9
- 作者:H. Hein;Song Sun;Jeff A. Viaclovsky;Ruobing Zhang
- 通讯作者:H. Hein;Song Sun;Jeff A. Viaclovsky;Ruobing Zhang
Conformally Prescribed Scalar Curvature on Orbifolds
Orbifold 上的共形规定标量曲率
- DOI:10.1007/s00220-022-04542-3
- 发表时间:2022
- 期刊:
- 影响因子:2.4
- 作者:Ju, Tao;Viaclovsky, Jeff
- 通讯作者:Viaclovsky, Jeff
Hodge theory on ALG ∗ manifolds
ALG 的 Hodge 理论 — 流形
- DOI:10.1515/crelle-2023-0016
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Chen, Gao;Viaclovsky, Jeff;Zhang, Ruobing
- 通讯作者:Zhang, Ruobing
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeff Viaclovsky其他文献
Degenerations of LeBrun twistor spaces
勒布伦扭转空间的简并
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Nobuhiro Honda;Jeff Viaclovsky;N. Honda;N. Honda - 通讯作者:
N. Honda
Conformal symmetries of self-dual hyperbolic monopole metrics
自对偶双曲单极子度量的共形对称性
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Nobuhiro Honda;Jeff Viaclovsky - 通讯作者:
Jeff Viaclovsky
Jeff Viaclovsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeff Viaclovsky', 18)}}的其他基金
Southern California Geometric Analysis Seminar, Winter 2023
南加州几何分析研讨会,2023 年冬季
- 批准号:
2236605 - 财政年份:2023
- 资助金额:
$ 49.84万 - 项目类别:
Standard Grant
Differential Equations and the Geometry of Manifolds
微分方程和流形几何
- 批准号:
1811096 - 财政年份:2018
- 资助金额:
$ 49.84万 - 项目类别:
Continuing Grant
Differential Equations and the Geometry of Manifolds
微分方程和流形几何
- 批准号:
1405725 - 财政年份:2014
- 资助金额:
$ 49.84万 - 项目类别:
Continuing Grant
Differential Equations and the Geometry of Manifolds
微分方程和流形几何
- 批准号:
1105187 - 财政年份:2011
- 资助金额:
$ 49.84万 - 项目类别:
Standard Grant
Pacific Rim Workshop in Geometric Analysis, Vancouver, Summer 2010
环太平洋几何分析研讨会,温哥华,2010 年夏季
- 批准号:
1016317 - 财政年份:2010
- 资助金额:
$ 49.84万 - 项目类别:
Standard Grant
Differential equations and the geometry of manifolds
微分方程和流形几何
- 批准号:
0804042 - 财政年份:2008
- 资助金额:
$ 49.84万 - 项目类别:
Continuing Grant
Differential equations and the geometry of manifolds
微分方程和流形几何
- 批准号:
0735928 - 财政年份:2007
- 资助金额:
$ 49.84万 - 项目类别:
Standard Grant
Differential equations and the geometry of manifolds
微分方程和流形几何
- 批准号:
0503506 - 财政年份:2005
- 资助金额:
$ 49.84万 - 项目类别:
Standard Grant
Compactness of Critical Metrics and Some Fully Nonlinear Equations in Conformal Geometry
共形几何中关键度量的紧性和一些完全非线性方程
- 批准号:
0202477 - 财政年份:2002
- 资助金额:
$ 49.84万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
- 批准号:
9902380 - 财政年份:1999
- 资助金额:
$ 49.84万 - 项目类别:
Fellowship Award
相似海外基金
(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
- 批准号:
2246031 - 财政年份:2023
- 资助金额:
$ 49.84万 - 项目类别:
Standard Grant
Differential Equations in Complex Riemannian Geometry
复杂黎曼几何中的微分方程
- 批准号:
2203607 - 财政年份:2022
- 资助金额:
$ 49.84万 - 项目类别:
Continuing Grant
Analysis and Geometry of Random Fields Related to Stochastic Partial Differential Equations and Random Matrices
与随机偏微分方程和随机矩阵相关的随机场的分析和几何
- 批准号:
2153846 - 财政年份:2022
- 资助金额:
$ 49.84万 - 项目类别:
Continuing Grant
Geometric Partial Differential Equations and Complex Geometry
几何偏微分方程和复几何
- 批准号:
2231783 - 财政年份:2022
- 资助金额:
$ 49.84万 - 项目类别:
Continuing Grant
Problems in Complex Geometry, Partial Differential Equations, and Mathematical Physics
复杂几何、偏微分方程和数学物理问题
- 批准号:
2203273 - 财政年份:2022
- 资助金额:
$ 49.84万 - 项目类别:
Continuing Grant
Applications of Quasiconformal Geometry and Partial Differential Equations
拟共形几何与偏微分方程的应用
- 批准号:
2141297 - 财政年份:2021
- 资助金额:
$ 49.84万 - 项目类别:
Standard Grant
Nonlinear Partial Differential Equations and Geometry
非线性偏微分方程和几何
- 批准号:
2005311 - 财政年份:2020
- 资助金额:
$ 49.84万 - 项目类别:
Standard Grant
Differential Geometry and Partial Differential Equations
微分几何和偏微分方程
- 批准号:
2005431 - 财政年份:2020
- 资助金额:
$ 49.84万 - 项目类别:
Continuing Grant
Applications of Quasiconformal Geometry and Partial Differential Equations
拟共形几何与偏微分方程的应用
- 批准号:
1955992 - 财政年份:2020
- 资助金额:
$ 49.84万 - 项目类别:
Standard Grant
CAREER: Differential Equations, Algebraic Geometry, and String Theory
职业:微分方程、代数几何和弦理论
- 批准号:
1944952 - 财政年份:2020
- 资助金额:
$ 49.84万 - 项目类别:
Continuing Grant