Heat Kernel Analysis
热核分析
基本信息
- 批准号:0202939
- 负责人:
- 金额:$ 16.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2005-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research is devoted to questions involving heat equations in both finite and infinite dimensional contexts. The following issues are to be addressed. 1. The existence of differential type inequalities related to hypoelliptic heat equations in finite dimensions, including the existence of logarithmic Sobolev and Poincare (or mass gap) type inequalities. 2. The existence of differential inequalities related to heat kernel measure and Wiener measures on path and loop spaces of Riemannian manifolds 3. The relationship between heat kernel measures and pinned Wiener measures on Loop spaces of compact Riemannian manifolds. 4. Extensions of Fock space like representations from finite dimensional groups to infinite dimensional loop groups. 5. The generalization of certain finite dimensional approximations to Wiener measures to include the "super symmetric quantum mechanics" setting used by physicists. Most of the questions to be studied in this research are motivated by, or are outgrowths of, questions coming from studying a number of fields, namely the spread of heat in curved metal plates, quantum mechanics, quantum field theories, and certain aspects of probability theory. These seemingly disparate fields turn out to share a common mathematical description, namely "parabolic partial differential equations" or equivalently the probabilistic theory of "Brownian motion." In most interesting (physically relevant) cases it is seldom possible to find explicit solutions to the complicated partial differential equations to be studied by the P.I. Nevertheless, it is often possible to discover interesting and relevant properties of the solutions. A typical phenomenon of parabolic partial differential equations is the fact that their solutions tend towards steady state values after waiting a sufficiently long time. For example, if a metal plate is heated in a non-uniform way and then left alone, the heat in the plate will redistribute itself over time so that the temperature reaches a constant equilibrium value throughout the plate. A fundamental problem, related to "Poincare" and "logarithmic Sobolev" inequalities, is the questions of how quickly do the systems described by the parabolic partial differential equations to be studied in this research converge to their equilibrium value. This same rate of convergence question has another interpretation in the context of quantum field theories describing relativistic (i.e. moving near the speed of light) elementary particles. For these theories the existence of a Poincare inequality has the desirable interpretation that the mathematical theory does not predict an unreasonable plethora of elementary particles. The particle interpretation of parabolic and related quantum mechanical Shrodinger equations will be another point of study. The particle interpretation goes under the title of Fock space representations which were mentioned in the first paragraph.
本研究致力于有限维和无限维环境中涉及热方程的问题。需要解决以下问题。1.有限维亚椭圆热方程微分型不等式的存在性,包括对数Sobolev和Poincare(或质量间隙)型不等式的存在性. 2.黎曼流形的路空间和圈空间上与热核测度和Wiener测度有关的微分不等式的存在性3.紧黎曼流形的Loop空间上热核测度与钉住Wiener测度之间的关系。4.从有限维群到无限维循环群的类Fock空间表示的推广。5.将某些有限维近似推广到维纳测量,以包括物理学家使用的“超对称量子力学”设置。 在这项研究中要研究的大多数问题的动机,或者是来自研究一些领域的问题,即弯曲金属板中的热传播,量子力学,量子场论和概率论的某些方面。这些看起来完全不同的领域有着共同的数学描述,即“抛物型偏微分方程”或等价的“布朗运动”的概率理论。“在大多数有趣的(物理相关的)情况下,很少有可能找到P.I.研究的复杂偏微分方程的显式解。然而,我们常常可以发现解的有趣的和相关的性质。抛物型偏微分方程的一个典型现象是,在等待足够长的时间后,它们的解趋于稳态值。例如,如果金属板以不均匀的方式加热,然后单独放置,板中的热量将随着时间的推移重新分布,使得温度在整个板中达到恒定的平衡值。一个基本的问题,相关的“庞加莱”和“对数Sobolev”不等式,是如何快速做的抛物型偏微分方程所描述的系统在本研究中所研究的收敛到他们的平衡值的问题。在描述相对论性(即以接近光速运动)基本粒子的量子场论中,同样的收敛速度问题有另一种解释。对于这些理论来说,庞加莱不等式的存在有一种可取的解释,即数学理论并没有预言不合理的过多的基本粒子。抛物和相关的量子力学薛定谔方程的粒子解释将是另一个研究点。粒子的解释属于第一段提到的福克空间表示的标题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruce Driver其他文献
Bruce Driver的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruce Driver', 18)}}的其他基金
FBM, Hypoelliptic Processes, and Path Integrals
FBM、低椭圆过程和路径积分
- 批准号:
1106270 - 财政年份:2011
- 资助金额:
$ 16.23万 - 项目类别:
Continuing Grant
Mathematical Sciences: Loop Space Analysis
数学科学:循环空间分析
- 批准号:
9612651 - 财政年份:1996
- 资助金额:
$ 16.23万 - 项目类别:
Continuing Grant
Mathematical Sciences: Loop Space Analysis
数学科学:循环空间分析
- 批准号:
9223177 - 财政年份:1993
- 资助金额:
$ 16.23万 - 项目类别:
Standard Grant
Mathematical Sciences: Loop Space Analysis
数学科学:循环空间分析
- 批准号:
9101720 - 财政年份:1991
- 资助金额:
$ 16.23万 - 项目类别:
Standard Grant
相似国自然基金
多kernel环境下通用图形处理器缓存子系统性能优化研究
- 批准号:62162002
- 批准年份:2021
- 资助金额:36 万元
- 项目类别:地区科学基金项目
玉米Edk1(Early delayed kernel 1)基因的克隆及其在胚乳早期发育中的功能研究
- 批准号:31871625
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Kernel算子的仿射非线性系统故障诊断与容错控制研究及应用
- 批准号:61473004
- 批准年份:2014
- 资助金额:83.0 万元
- 项目类别:面上项目
非向量型Kernel学习机及其对动态形状模板的应用
- 批准号:60373090
- 批准年份:2003
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Analysis of the effect of integral kernel shape on pattern formation in nonlocal reaction-diffusion equations
积分核形状对非局部反应扩散方程模式形成的影响分析
- 批准号:
23K13013 - 财政年份:2023
- 资助金额:
$ 16.23万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Whole-Kernel Analysis Against Developer- and Compiler-Introduced Errors
职业:针对开发人员和编译器引入的错误进行全内核分析
- 批准号:
2045478 - 财政年份:2021
- 资助金额:
$ 16.23万 - 项目类别:
Continuing Grant
Analysis on reproducing kernel Hilbert spaces
再生核希尔伯特空间分析
- 批准号:
20K14334 - 财政年份:2020
- 资助金额:
$ 16.23万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Kernel principal component analysis in high dimension, low sample size and its applications
高维、小样本核主成分分析及其应用
- 批准号:
19J10175 - 财政年份:2019
- 资助金额:
$ 16.23万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Stochastic Differential Equations, Heat Kernel Analysis, and Random Matrix Theory
随机微分方程、热核分析和随机矩阵理论
- 批准号:
1800733 - 财政年份:2018
- 资助金额:
$ 16.23万 - 项目类别:
Standard Grant
Improvement of dynamicsl scaling analysis by means of the kernel method and new development for the nonequilibrium relaxation method
核方法对动力学标度分析的改进及非平衡弛豫方法的新进展
- 批准号:
15K05205 - 财政年份:2015
- 资助金额:
$ 16.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Novel Kernel Methods for Data Analysis in Dynamical Systems: Applications to Dimension Reduction and Prediction in Atmospheric and Oceanic Dynamics
动力系统数据分析的新核方法:在大气和海洋动力学中的降维和预测应用
- 批准号:
1521775 - 财政年份:2015
- 资助金额:
$ 16.23万 - 项目类别:
Continuing Grant
Analysis and Developments of Kernel Adaptive Filtering Algorithm
核自适应滤波算法的分析与发展
- 批准号:
15K06081 - 财政年份:2015
- 资助金额:
$ 16.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Frame-Based Kernel Analysis and Algorithms for Fast Recovery of Erasures and Multiplexing
用于快速恢复擦除和复用的基于帧的内核分析和算法
- 批准号:
1403400 - 财政年份:2014
- 资助金额:
$ 16.23万 - 项目类别:
Standard Grant
Investigations in Multiple Kernel Learning, in particular the rigorous analysis of algorithms when learning to combine infinitely many kernels
多核学习的研究,特别是学习组合无限多个核时算法的严格分析
- 批准号:
443151-2013 - 财政年份:2013
- 资助金额:
$ 16.23万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's