Applications of Analysis to Differential Geometry

分析在微分几何中的应用

基本信息

  • 批准号:
    0203637
  • 负责人:
  • 金额:
    $ 11.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-06-01 至 2006-05-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT DMS- 0203637The object of this proposal is to continue our research on the topics below using techniques such as complex analysis, spectral theory, non-linear analysis and ergodic theory: i) Spectral theory of the Laplacian on functions and forms - connections with ergodic theory. ii) Global injectivity theorems. iii) Topology of umbilics. iv) The generalized Hilbert theorem. Topic i) is a collection of problems coming from (and relating to) spectral and ergodic theory, dynamics, vanishing theorems and the topology of manifolds of non-positive curvature. Topic ii) is an outgrowth of our efforts to understand embeddedness of minimal surfaces. It centers on the problem of finding conditions for a local diffeomorphism between non-compact manifolds to be injective.This type of question arises in areas of mathematics as diverse as algebraic geometry and mathematical economics. Our methods here come from geometry, topology and global analysis. Topic iii) is a classical problem in differential geometry namely, understanding the topology of umbilical singularities. The plan is to continue studying this problem as a question about the blow-up of certain hyperbolic partial differential equations. Topic iv) is also a classical problem, dealing with isometric immersions of hyperbolic spaces. As in iii), we plan to approach this question as a blow-up problem.In our approach to research, starting with the earlier work on minimal surface theory, we have always sought to achieve a balance between technique and creative mathematics. This proposal is full of problems and ideas coming from diverse areas, such as spectral theory, dynamical systems, hyperbolic equations, algebraic and Riemannian geometry. We have already contributed to all these questions. Given the variety of topics, we would like to believe that this proposal advances the "internal" conversation of mathematics. On the other hand, the work on Global Inversion is potentially of interest to applied disciplines, since it addresses the question of solvability of systems of non-linear equations.
DMS-0203637本建议的目的是利用复分析、谱理论、非线性分析和遍历理论等技术继续我们对以下主题的研究:i)关于函数和形式的拉普拉斯的谱理论--与遍历理论的联系。Ii)整体内射性定理。Iii)脐带的拓扑学。4)推广的希尔伯特定理。主题I)是来自(和与之相关的)谱和遍历理论、动力学、消失定理和非正曲率流形的拓扑的问题的集合。主题II)是我们理解极小曲面嵌入性的努力的结果。它的中心问题是寻找非紧流形之间的局部微分同胚是内射的条件。这类问题出现在从代数几何到数理经济学的各种数学领域。我们的方法来自几何学、拓扑学和全局分析。主题III)是微分几何中的一个经典问题,即理解脐带奇点的拓扑。我们的计划是继续把这个问题作为一个关于某些双曲型偏微分方程解爆破的问题来研究。主题IV)也是一个经典问题,涉及双曲空间的等距浸入。在我们的研究方法中,从早期关于极小曲面理论的工作开始,我们一直试图在技术和创造性数学之间取得平衡。这一建议充满了来自不同领域的问题和想法,如谱理论、动力系统、双曲型方程、代数和黎曼几何。我们已经对所有这些问题做出了贡献。考虑到话题的多样性,我们愿意相信这一提议促进了数学的“内部”对话。另一方面,关于全局逆的工作可能引起应用学科的兴趣,因为它解决了非线性方程组的可解性问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Frederico Xavier其他文献

Patterns of Direct Oral Anticoagulant Use in Pediatric Patients: Results from a Multicenter National Database
  • DOI:
    10.1182/blood-2022-169638
  • 发表时间:
    2022-11-15
  • 期刊:
  • 影响因子:
  • 作者:
    Meghan McCormick;Molly Mack;Frederico Xavier
  • 通讯作者:
    Frederico Xavier
May-Thurner Syndrome Should be Explored As a Possible Existing Risk Factor in Pediatric Patients Presenting with Non-Central Venous Line Associated Deep Vein Thrombosis
  • DOI:
    10.1182/blood-2023-178961
  • 发表时间:
    2023-11-02
  • 期刊:
  • 影响因子:
  • 作者:
    Erica Mamauag;Cynthia Liang;Katelin Magnan;Frederico Xavier
  • 通讯作者:
    Frederico Xavier
Post-Immune Tolerance Induction Prophylactic FVIII Infusions May Not be Necessary for Tolerized Hemophilia a Patients on Emicizumab
  • DOI:
    10.1182/blood-2023-179255
  • 发表时间:
    2023-11-02
  • 期刊:
  • 影响因子:
  • 作者:
    Pragya Singh;Erica Mamauag;Deirdre Nolfi-Donegan;Frederico Xavier
  • 通讯作者:
    Frederico Xavier
Invertibility of Bass-Connell-Wright polynomial maps
  • DOI:
    10.1007/bf01444881
  • 发表时间:
    1993-01-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Frederico Xavier
  • 通讯作者:
    Frederico Xavier
On the structure of complete simply connected embedded minimal surfaces
  • DOI:
    10.1007/bf02921290
  • 发表时间:
    1993-09-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Frederico Xavier
  • 通讯作者:
    Frederico Xavier

Frederico Xavier的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Frederico Xavier', 18)}}的其他基金

Mathematical Sciences: Immersions of Hyperbolic Spaces and Complete Minimal Surfaces
数学科学:双曲空间和完全极小曲面的浸入
  • 批准号:
    8500931
  • 财政年份:
    1985
  • 资助金额:
    $ 11.18万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219384
  • 财政年份:
    2022
  • 资助金额:
    $ 11.18万
  • 项目类别:
    Standard Grant
DMS-EPSRC: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    EP/V051121/1
  • 财政年份:
    2022
  • 资助金额:
    $ 11.18万
  • 项目类别:
    Research Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219391
  • 财政年份:
    2022
  • 资助金额:
    $ 11.18万
  • 项目类别:
    Standard Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219397
  • 财政年份:
    2022
  • 资助金额:
    $ 11.18万
  • 项目类别:
    Standard Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219434
  • 财政年份:
    2022
  • 资助金额:
    $ 11.18万
  • 项目类别:
    Standard Grant
Analysis of stochastic chaos in nonlinear stochastic differential equations and its applications
非线性随机微分方程中的随机混沌分析及其应用
  • 批准号:
    21H01002
  • 财政年份:
    2021
  • 资助金额:
    $ 11.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Spectral element methods for fractional differential equations, with applications in applied analysis and medical imaging
分数阶微分方程的谱元方法,在应用分析和医学成像中的应用
  • 批准号:
    EP/T022280/1
  • 财政年份:
    2021
  • 资助金额:
    $ 11.18万
  • 项目类别:
    Research Grant
CAREER: Fractional Partial Differential Equations, Harmonic Analysis, and Their Applications in the Geometric Calculus of Variations and Quantitative Topology
职业:分数阶偏微分方程、调和分析及其在变分几何微积分和定量拓扑中的应用
  • 批准号:
    2044898
  • 财政年份:
    2021
  • 资助金额:
    $ 11.18万
  • 项目类别:
    Continuing Grant
Spectral element methods for fractional differential equations, with applications in applied analysis and medical imaging
分数阶微分方程的谱元方法,在应用分析和医学成像中的应用
  • 批准号:
    EP/T022132/1
  • 财政年份:
    2021
  • 资助金额:
    $ 11.18万
  • 项目类别:
    Research Grant
Applications of Rough Differential Systems: Theoretical Physics, Data Analysis, and Numerics
粗微分系统的应用:理论物理、数据分析和数值
  • 批准号:
    1952966
  • 财政年份:
    2020
  • 资助金额:
    $ 11.18万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了