Spectral element methods for fractional differential equations, with applications in applied analysis and medical imaging

分数阶微分方程的谱元方法,在应用分析和医学成像中的应用

基本信息

  • 批准号:
    EP/T022132/1
  • 负责人:
  • 金额:
    $ 72.94万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Fractional differential equations are of increasing importance in a wide-range of applications, including medical imagining, collective behaviours, finance, image analysis, and elsewhere. These equations are challenging to solve numerically as they involve nonlocal interactions, which if tackled naively lead to dense discretisations that are too computationally difficult to solve, thereby limiting the scope of feasible numerical simulations. This project will develop a state-of-the-art spectral element method for simulating these models based on reducing the equations to highly structured linear systems, using a key observation that singular behaviour can be captured exactly in the development of numerical schemes. This will lead to faster and more accurate simulations facilitating progress in a wide range of applications. We will apply the results to challenging problems arising in applied analysis. Fractional differential equations arise in collective behaviour models such as swarming of animal species, cell movement by chemotaxis, granular media interaction and self-assembly of particles, and give important information about the equilibrium behaviour of such systems. These equations are difficult to solve numerically due to possible blow-up behaviour, where the model develops a singularity in finite time. The proposed scheme will allow for refinement near singularities to concentrate computational power in these difficult regions while keeping control on computational cost, allowing for high performance simulations. We will also tackle real world applications in medical imaging, including ultrasound imagining of the brain. Fractional differential equations have proven powerful tools in designing modern models that capture nonlocal behaviour caused by memory effects in the tissue. The developed spectral element method will facilitate more accurate simulations involving non-trivial geometries, for example ellipsoidal models of the skull, while avoiding inaccuracies in current schemes caused by sharp transitions between the skull and tissue.
分数阶微分方程在医学想象、集体行为、金融、图像分析和其他领域的广泛应用中具有越来越重要的作用。这些方程的数值求解具有挑战性,因为它们涉及非局部相互作用,如果简单地处理,会导致密集的离散化,计算上太难求解,从而限制了可行的数值模拟的范围。这个项目将开发一种最先进的谱元素方法来模拟这些模型,方法是将方程简化为高度结构的线性系统,使用一个关键观测数据,即在数值方案的开发中可以准确地捕获奇异行为。这将导致更快和更准确的模拟,促进在广泛的应用中取得进展。我们将把结果应用于应用分析中出现的具有挑战性的问题。分数阶微分方程组出现在动物种群聚集、细胞趋化运动、颗粒介质相互作用和颗粒自组装等集体行为模型中,并给出了关于这些系统的平衡行为的重要信息。由于可能的爆破行为,这些方程很难在数值上求解,其中模型在有限时间内发展出奇异性。所提出的方案将允许在奇点附近进行精化,以便在这些困难区域集中计算能力,同时保持对计算成本的控制,从而实现高性能的模拟。我们还将解决现实世界中医学成像的应用,包括大脑的超声波成像。分数阶微分方程组已被证明是设计现代模型的强大工具,这些模型捕捉由组织中的记忆效应引起的非局部行为。开发的谱元素方法将有助于更准确地模拟非平凡几何,例如头骨的椭球体模型,同时避免当前方案中由于头骨和组织之间的急剧过渡而导致的不准确。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evolution of a structured cell population endowed with plasticity of traits under constraints on and between the traits.
From radial symmetry to fractal behavior of aggregation equilibria for repulsive-attractive potentials
从径向对称到排斥-吸引势聚集平衡的分形行为
Consensus‐based sampling
  • DOI:
    10.1111/sapm.12470
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    J. Carrillo;F. Hoffmann;A. Stuart;U. Vaes
  • 通讯作者:
    J. Carrillo;F. Hoffmann;A. Stuart;U. Vaes
Global minimizers of a large class of anisotropic attractive-repulsive interaction energies in 2D
二维中一大类各向异性吸引-排斥相互作用能的全局最小化
The equilibrium measure for an anisotropic nonlocal energy
各向异性非局域能量的平衡测度
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sheehan Olver其他文献

Numerical Solution of Riemann–Hilbert Problems: Random Matrix Theory and Orthogonal Polynomials
  • DOI:
    10.1007/s00365-013-9221-3
  • 发表时间:
    2013-12-11
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Sheehan Olver;Thomas Trogdon
  • 通讯作者:
    Thomas Trogdon
Erratum to: Numerical Solution of Riemann–Hilbert Problems: Painlevé II
A sparse spectral method for fractional differential equations in one-spatial dimension
  • DOI:
    10.1007/s10444-024-10164-1
  • 发表时间:
    2024-07-10
  • 期刊:
  • 影响因子:
    2.100
  • 作者:
    Ioannis P. A. Papadopoulos;Sheehan Olver
  • 通讯作者:
    Sheehan Olver
Orthogonal Polynomials on Planar Cubic Curves

Sheehan Olver的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
  • 批准号:
    52301178
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
毛竹MLE(mariner-like element)转座酶催化机理研究
  • 批准号:
    LZ19C160001
  • 批准年份:
    2018
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
静动态损伤问题的基面力元法及其在再生混凝土材料细观损伤分析中的应用
  • 批准号:
    11172015
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
CXCL16/CXCR6调控CIA发病的分子机制研究
  • 批准号:
    30772012
  • 批准年份:
    2007
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
Kallikrein 4(KLK4)受激素调控的机制和对激素非依赖前列腺癌生长影响的实验研究
  • 批准号:
    30571853
  • 批准年份:
    2005
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目

相似海外基金

Spectral element methods for fractional differential equations, with applications in applied analysis and medical imaging
分数阶微分方程的谱元方法,在应用分析和医学成像中的应用
  • 批准号:
    EP/T022280/1
  • 财政年份:
    2021
  • 资助金额:
    $ 72.94万
  • 项目类别:
    Research Grant
Least Squares PGD Mimetic Spectral Element Methods for Systems of First-Order PDEs
一阶偏微分方程组的最小二乘 PGD 模拟谱元方法
  • 批准号:
    2316393
  • 财政年份:
    2021
  • 资助金额:
    $ 72.94万
  • 项目类别:
    Studentship
Grid generation and multigrid schemes for spectral element methods in curved domains
弯曲域谱元法的网格生成和多重网格方案
  • 批准号:
    232080977
  • 财政年份:
    2013
  • 资助金额:
    $ 72.94万
  • 项目类别:
    Research Grants
Seismic Imaging of Alaska Using Spectral-Element and Adjoint Methods
使用谱元和伴随方法对阿拉斯加进行地震成像
  • 批准号:
    1215959
  • 财政年份:
    2012
  • 资助金额:
    $ 72.94万
  • 项目类别:
    Continuing Grant
Seismic waveform tomography on continental scales based on the spectral-element and adjoint methods
基于谱元和伴随方法的大陆尺度地震波形层析成像
  • 批准号:
    73582572
  • 财政年份:
    2009
  • 资助金额:
    $ 72.94万
  • 项目类别:
    Research Grants
Parallel Spectral Element Methods for Viscous Flow Problems in General Domains
一般域粘性流问题的并行谱元方法
  • 批准号:
    9107674
  • 财政年份:
    1991
  • 资助金额:
    $ 72.94万
  • 项目类别:
    Standard Grant
Spectral and Spectral Element Methods
谱和谱元方法
  • 批准号:
    9012263
  • 财政年份:
    1991
  • 资助金额:
    $ 72.94万
  • 项目类别:
    Standard Grant
RUI: Spectral Methods and Their Combination with the h-p Version of Finite Element Method for Chemically Reacting Flow and PDE's on Nonsmooth Domains
RUI:谱法及其与化学反应流有限元法的 h-p 版本和非光滑域上的偏微分方程的组合
  • 批准号:
    9113895
  • 财政年份:
    1991
  • 资助金额:
    $ 72.94万
  • 项目类别:
    Standard Grant
RUI: Spectral Methods and Their Combinations with the Finite Element Method for Chemically Reacting Flows and PDEson Nonsmooth Domains
RUI:化学反应流和非光滑域偏微分方程的谱法及其与有限元法的组合
  • 批准号:
    9005874
  • 财政年份:
    1990
  • 资助金额:
    $ 72.94万
  • 项目类别:
    Standard Grant
Calculation of Large-Scale Engineering Flows by Parallel Spectral Element Methods
并行谱元法计算大型工程流量
  • 批准号:
    8806925
  • 财政年份:
    1988
  • 资助金额:
    $ 72.94万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了