Lattice Gauge Theories, Importance Sampling, and Quantum Unique Ergodicity

格规理论、重要性采样和量子唯一遍历性

基本信息

  • 批准号:
    1608249
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-15 至 2019-09-30
  • 项目状态:
    已结题

项目摘要

This research project investigates three classes of questions in probability theories. One class concerns lattice gauge theories, which are discrete approximations of quantum field theories. Quantum field theories are central to the modern understanding of particle physics but do not yet have a firm mathematical foundation, and a proper mathematical understanding of quantum field theories has long been a goal of not only mathematicians, but also of theoretical physicists. This project aims to shed light on some fundamental mathematical questions in this area. A second class of questions involves theoretical properties of importance sampling and various applications of these properties. Importance sampling is central to development of a strong foundation for computational statistics; the results of this work are anticipated to be useful in a wide variety of research areas outside mathematics in which scientific computing is used, including computer science, physics, chemistry, computational biology, and a variety of engineering disciplines. The third class of questions centers on probabilistic techniques for establishing properties of dynamical systems. The questions under study connect several areas of mathematics, including number theory, microlocal analysis, and partial differential equations. The project includes training of graduate students in probability theory and its applications. The project will study several questions in probability. One class of problems concerns the evaluation of Wilson loop expectations in lattice gauge theories, which has important applications in physics. The project aims to provide a rare rigorous result in this topic, giving the first proper mathematical justification for the famous 1/N expansion of lattice gauge theories. A second class of problems involves theoretical properties of importance sampling and various applications of these properties. The project aims to solve the mathematical problem of determining the minimum sample size required for good performance of importance sampling in any given setting. Lastly, a third class of problems centers around probabilistic techniques for proving that small perturbations of Dirichlet Laplacians are quantum unique ergodic.
本研究项目研究概率论中的三类问题。其中一类涉及格点规范理论,它是量子场论的离散近似。量子场论是现代理解粒子物理的核心,但还没有坚实的数学基础,对量子场论的正确数学理解长期以来不仅是数学家的目标,也是理论物理学家的目标。这个项目旨在阐明这一领域的一些基本数学问题。第二类问题涉及重要性抽样的理论性质以及这些性质的各种应用。重要性抽样是发展计算统计学坚实基础的核心;这项工作的结果预计将在使用科学计算的数学以外的广泛研究领域中有用,包括计算机科学、物理、化学、计算生物学和各种工程学科。第三类问题集中在建立动力系统性质的概率技术上。正在研究的问题连接了几个数学领域,包括数论、微局部分析和偏微分方程式。该项目包括对研究生进行概率论及其应用方面的培训。该项目将研究概率中的几个问题。其中一类问题涉及格点规范理论中威尔逊环期望的计算,它在物理学中有重要的应用。该项目的目的是在这个主题中提供一个罕见的严格结果,为著名的格点规范理论的1/N展开提供第一个适当的数学证明。第二类问题涉及重要抽样的理论性质以及这些性质的各种应用。该项目旨在解决在任何给定环境下确定重要抽样良好性能所需的最小样本量的数学问题。最后,第三类问题围绕着证明狄利克雷拉普拉斯的小扰动是量子唯一遍历的概率技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sourav Chatterjee其他文献

Spectral gap of nonreversible Markov chains
不可逆马尔可夫链的谱隙
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sourav Chatterjee
  • 通讯作者:
    Sourav Chatterjee
MetQuan - A Comprehensive Toolkit for Variational Quantum Sensing and Metrology
MetQuan - 用于变分量子传感和计量的综合工具包
Retraction Note: ICB3E induces iNOS expression by ROS-dependent JNK and ERK activation for apoptosis of leukemic cells
  • DOI:
    10.1007/s10495-024-02007-7
  • 发表时间:
    2024-07-23
  • 期刊:
  • 影响因子:
    8.100
  • 作者:
    Nabendu Biswas;Sanjit K. Mahato;Avik Acharya Chowdhury;Jaydeep Chaudhuri;Anirban Manna;Jayaraman Vinayagam;Sourav Chatterjee;Parasuraman Jaisankar;Utpal Chaudhuri;Santu Bandyopadhyay
  • 通讯作者:
    Santu Bandyopadhyay
Liouville Theory: An Introduction to Rigorous Approaches
刘维尔理论:严格方法简介
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sourav Chatterjee;Edward Witten
  • 通讯作者:
    Edward Witten
RETRACTED ARTICLE: ICB3E induces iNOS expression by ROS-dependent JNK and ERK activation for apoptosis of leukemic cells
  • DOI:
    10.1007/s10495-011-0695-9
  • 发表时间:
    2012-01-18
  • 期刊:
  • 影响因子:
    8.100
  • 作者:
    Nabendu Biswas;Sanjit K. Mahato;Avik Acharya Chowdhury;Jaydeep Chaudhuri;Anirban Manna;Jayaraman Vinayagam;Sourav Chatterjee;Parasuraman Jaisankar;Utpal Chaudhuri;Santu Bandyopadhyay
  • 通讯作者:
    Santu Bandyopadhyay

Sourav Chatterjee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sourav Chatterjee', 18)}}的其他基金

Mathematical Foundations for Yang-Mills Theory, Randomly Growing Surfaces, and Related Systems
杨米尔斯理论、随机生长曲面和相关系统的数学基础
  • 批准号:
    2153654
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Matrix Completion with Non-uniform Missing Patterns, a New Measure of Conditional Dependence, and Applications to Feature Selection
具有非均匀缺失模式的矩阵补全、条件依赖性的新度量以及在特征选择中的应用
  • 批准号:
    2113242
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Two-Dimensional KPZ Evolution, Fluctuation Lower Bounds, and Ultrametricity
二维 KPZ 演化、波动下界和超计量性
  • 批准号:
    1855484
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Concentration of measure, large deviations, normal approximation and applications
测量集中、大偏差、正态近似及应用
  • 批准号:
    1441513
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Concentration of measure, large deviations, normal approximation and applications
测量集中、大偏差、正态近似及应用
  • 批准号:
    1309618
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Random Structures and Limit Objects
随机结构和限制对象
  • 批准号:
    1237838
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Disordered systems, dense graphs, normal approximation and applications
无序系统、稠密图、正态逼近及应用
  • 批准号:
    1005312
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Normal Approximation, Fair Allocations, Interacting Brownian Particles, and Applications
正态近似、公平分配、相互作用的布朗粒子和应用
  • 批准号:
    0707054
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Gauge-Higgs 统一模型的现象学研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    18 万元
  • 项目类别:
    专项基金项目

相似海外基金

Phase Structure of Discrete Abelian Lattice Gauge Theories at Nonzero Fermion Density
非零费米子密度下离散阿贝尔晶格规范理论的相结构
  • 批准号:
    519321-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Phase Structure of Discrete Abelian Lattice Gauge Theories at Nonzero Fermion Density
非零费米子密度下离散阿贝尔晶格规范理论的相结构
  • 批准号:
    519321-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Phase Structure of Discrete Abelian Lattice Gauge Theories at Nonzero Fermion Density
非零费米子密度下离散阿贝尔晶格规范理论的相结构
  • 批准号:
    519321-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
New physics from lattice simulations of strongly interacting gauge theories
来自强相互作用规范理论的晶格模拟的新物理学
  • 批准号:
    319989789
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grants
Lattice gauge theories with tensor network scheme
具有张量网络方案的格子规范理论
  • 批准号:
    15H03651
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Tensor network methods for lattice gauge theories
格子规范理论的张量网络方法
  • 批准号:
    264112222
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grants
Studies of topological phases based on lattice gauge theories
基于晶格规范理论的拓扑相研究
  • 批准号:
    25400388
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of lattice formulations for supersymmetric gauge theories and their nonperturbative aspects
超对称规范理论的晶格公式及其非微扰方面的研究
  • 批准号:
    21540290
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Lattice Gauge Theories beyond QCD: large N, Supersymmetry and Orientifold planar equivalence
QCD 之外的晶格规范理论:大 N、超对称性和东方平面等价
  • 批准号:
    PP/E007228/1
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Lattice simulations and analytical computations of five-dimensional gauge theories to study the Higgs boson as an extra-dimensional gauge field
五维规范理论的晶格模拟和分析计算,研究希格斯玻色子作为超维规范场
  • 批准号:
    73451156
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了