Research in Model Theory: Generic Structures
模型理论研究:泛型结构
基本信息
- 批准号:0203747
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-06-15 至 2007-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-0203747Principal Investigator: Kitty L. HollandHolland's proposed work centers on applying the Hrushovski-styleamalgamation technique to produce novel examples of omega-stablestructures. Together with Baldwin, Holland is engaged in anattempt to use this technique to produce a bad field. Holland'swork toward this end has produced algebro-geometric results ofindependent interest on the relationship between transcendencedegree and multiplicative group rank in characteristic zerofields. Holland proposes to exploit this work to complete thebad field project with Baldwin and to extend thealgebro-geometric results. She further proposes to settlestability questions for certain structures produced by thetechnique; to analyze the geometries of structures produced bythe technique and to extend her joint work with Baldwin toward anabstract model theoretic analysis of the technique and itsproducts.Since its introduction in the early 90s, Hrushovski'samalgamation technique has been applied with great success tosettle a variety of old existence conjectures central toalgebraic model theory. Holland's ambition, embodied in thisproposal, is threefold: To continue breaking new ground inapplication of the technique, to explore the limitations of thetechnique by characterizing common properties of its products,and to make the technique more widely and efficiently applicableby extracting common difficulties arising in its implementationand dealing with them uniformly on an abstract level.Holland's proposed work centers on applying the Hrushovski-styleamalgamation technique to produce novel examples of omega-stablestructures. Together with Baldwin, Holland is engaged in anattempt to use this technique to produce a bad field. Holland'swork toward this end has produced algebro-geometric results ofindependent interest on the relationship between transcendencedegree and multiplicative group rank in characteristic zerofields. Holland proposes to exploit this work to complete thebad field project with Baldwin and to extend thealgebro-geometric results. She further proposes to settlestability questions for certain structures produced by thetechnique; to analyze the geometries of structures produced bythe technique and to extend her joint work with Baldwin toward anabstract model theoretic analysis of the technique and itsproducts.Since its introduction in the early 90s, Hrushovski'samalgamation technique has been applied with great success tosettle a variety of old existence conjectures central toalgebraic model theory. Holland's ambition, embodied in thisproposal, is threefold: To continue breaking new ground inapplication of the technique, to explore the limitations of thetechnique by characterizing common properties of its products,and to make the technique more widely and efficiently applicableby extracting common difficulties arising in its implementationand dealing with them uniformly on an abstract level.
摘要奖:DMS-0203747首席研究员:Kitty L.HollandHolland建议的工作重点是应用Hrushovski风格的融合技术来产生欧米茄稳定结构的新例子。与鲍德温一起,霍兰德正在尝试使用这种技术来制造一个糟糕的磁场。Holland为此目的所做的工作已经产生了依赖于特征零域中超越度与乘法群秩间关系的代数几何结果。Holland建议利用这项工作与Baldwin一起完成糟糕的场项目,并推广代数几何结果。她还建议解决由该技术产生的某些结构的稳定性问题;分析由该技术产生的结构的几何形状,并将她与鲍德温的合作扩展到对该技术及其产品的抽象模型理论分析。自90年代初引入以来,Hrushovski的混合技术已成功地应用于各种古老的存在猜想的中心代数模型理论。霍兰德的雄心体现在这项建议中有三个方面:继续在该技术的应用上取得新的突破,通过表征其产品的共同特性来探索该技术的局限性,通过提取在实施中出现的共同困难并在抽象层面上统一处理来使该技术更广泛和更有效地应用。霍兰德提议的工作重点是应用赫鲁晓夫斯基式的融合技术来产生欧米伽稳定结构的新例子。与鲍德温一起,霍兰德正在尝试使用这种技术来制造一个糟糕的磁场。Holland为此目的所做的工作已经产生了依赖于特征零域中超越度与乘法群秩间关系的代数几何结果。Holland建议利用这项工作与Baldwin一起完成糟糕的场项目,并推广代数几何结果。她还建议解决由该技术产生的某些结构的稳定性问题;分析由该技术产生的结构的几何形状,并将她与鲍德温的合作扩展到对该技术及其产品的抽象模型理论分析。自90年代初引入以来,Hrushovski的混合技术已成功地应用于各种古老的存在猜想的中心代数模型理论。荷兰的雄心体现在这项提议中有三个方面:继续在技术应用方面开辟新的道路,通过描述其产品的共同特性来探索技术的局限性,以及通过提取在实施中出现的共同困难并在抽象层面上统一处理来使技术得到更广泛和有效的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kitty Holland其他文献
Kitty Holland的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kitty Holland', 18)}}的其他基金
POWRE: Research in Model Theory: Stable Structures via Amalgamation
POWRE:模型理论研究:通过合并实现稳定结构
- 批准号:
9973610 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Research in Model Theory: Strongly Minimal Fusions and Other Homogeneous-Universal Models
数学科学:模型论研究:强最小融合和其他齐次通用模型
- 批准号:
9510377 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
基于术中实时影像的SAM(Segment anything model)开发AI指导房间隔穿刺位置决策的增强现实模型
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
- 批准号:81771933
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
基于Multilevel Model的雷公藤多苷致育龄女性闭经预测模型研究
- 批准号:81503449
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
基于非齐性 Makov model 建立病证结合的绝经后骨质疏松症早期风险评估模型
- 批准号:30873339
- 批准年份:2008
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
An Integrative Research on the Development of a New HRM Model from the Attribution Theory Perspective
归因理论视角下新型人力资源管理模式开发的综合研究
- 批准号:
20H01545 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
EAGER: Real-Time: Collaborative Research: Unified Theory of Model-based and Data-driven Real-time Optimization and Control for Uncertain Networked Systems
EAGER:实时:协作研究:不确定网络系统基于模型和数据驱动的实时优化与控制的统一理论
- 批准号:
1953049 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Model Theory of Differential and Difference Equations with Applications
FRG:协作研究:微分方程和差分方程的模型理论及其应用
- 批准号:
1760413 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Research on the construction and practice of "theory-practice-evaluation model" to realize "deep learning"
实现“深度学习”的“理论-实践-评估模型”构建与实践研究
- 批准号:
18K02957 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
EAGER: Real-Time: Collaborative Research: Unified Theory of Model-based and Data-driven Real-time Optimization and Control for Uncertain Networked Systems
EAGER:实时:协作研究:不确定网络系统基于模型和数据驱动的实时优化与控制的统一理论
- 批准号:
1839707 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Model Theory of Differential and Difference Equations with Applications
FRG:协作研究:微分方程和差分方程的模型理论及其应用
- 批准号:
1760212 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Model Theory of Differential and Difference Equations with Applications
FRG:协作研究:微分方程和差分方程的模型理论及其应用
- 批准号:
1760448 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
EAGER: Real-Time: Collaborative Research: Unified Theory of Model-based and Data-driven Real-time Optimization and Control for Uncertain Networked Systems
EAGER:实时:协作研究:不确定网络系统基于模型和数据驱动的实时优化与控制的统一理论
- 批准号:
1839804 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Research to elucidate Shelah's conjecture and its related branches in model theory
模型论中谢拉猜想及其相关分支的阐明研究
- 批准号:
17K05342 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Basic research for building a synchronic community model in constitutional theory
构建共时共同体模型的宪政理论基础研究
- 批准号:
17K03342 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)