Topology and Geometry of 3-Dimensional Manifolds

3 维流形的拓扑和几何

基本信息

  • 批准号:
    0204142
  • 负责人:
  • 金额:
    $ 33.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-06-01 至 2006-05-31
  • 项目状态:
    已结题

项目摘要

Culler and Shalen are continuing to investigate consequences of theirwork on the character variety of a knot group. This involves studyingthe relationship between the boundary slopes of a knot and thetopological properties of essential surfaces that realize theslopes. It also includes their ongoing project with Dunfield and Jacoabout smallish knots in non-Haken manifolds, which is part of aprogram to prove the Poincare Conjecture. A joint project by Agol,Culler and Shalen, concerning the construction of covering spaces of atriangulated 3-manifold by an inductive process, is also relevant tothis program. Agol is also continuing his work on geometric finitenessof geometrically defined subgroups of knot groups, volume estimatesfor non-fibered Haken manifolds and hyperbolic orbifolds, and thecomplexity of algorithms in 3-manifold theory.A fundamental problem in many areas of mathematics is to classify allexamples of a certain type of mathematical object. The objects ofstudy in this proposal are 3-manifolds, which are mathematical modelsof 3-dimensional spaces. Since our universe is a 3-dimensional space,the classification of 3-manifolds is directly related to ourunderstanding of nature itself. The classification problem for3-manifolds is far from solved, but the work of many mathematiciansover the last 25 years has at least produced a conjecturalanswer. Remarkably, the conjectures, if true, will provide aunification of the most classical, rigid kind of geometry---both theEuclidean version first studied by the ancient Greeks and thenon-Euclidean kind that constituted an exciting discovery in the 19thcentury---and topology, a subject devoted to studying much moreflexible geometric structures, which until recently had developedquite independently of the more classical theories. The worksupported by this grant forms part of the effort to verify theconjectured geometric classification of 3-manifolds.
Culler和Shalen正在继续研究他们的工作对结群性格变化的影响。这包括研究结的边界斜率与实现斜率的基本表面的拓扑性质之间的关系。它还包括他们正在进行的关于非哈肯流形中的小结的项目,这是证明庞加莱猜想计划的一部分。Agol,Culler和Shalen的一个合作项目,关于用归纳法构造三角化3流形的覆盖空间,也与这个方案有关。Agol也在继续研究结群的几何定义子群的几何有限性,非纤维Haken流形和双曲轨道的体积估计,以及3流形理论中算法的复杂性。数学许多领域的一个基本问题是对某一类数学对象的样本进行分类。本文研究的对象是三维流形,即三维空间的数学模型。由于我们的宇宙是一个三维空间,三维流形的分类直接关系到我们对自然本身的理解。3流形的分类问题还远未解决,但在过去25年里,许多数学家的工作至少产生了一个推测性的答案。值得注意的是,如果这些猜想是正确的,它们将把最经典、最刚性的几何——古希腊人首先研究的欧几里得几何,以及19世纪令人兴奋的非欧几里得几何——和拓扑学统一起来。拓扑学致力于研究更灵活的几何结构,直到最近才完全独立于更经典的理论发展起来。这项资助的工作是验证3流形的推测几何分类的一部分。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Shalen其他文献

On two-generator subgroups of mapping torus groups
关于映射环面群的二元子群
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Naomi Andrew;IV EdgarA.Bering;Ilya Kapovich;Peter Shalen;Stefano Vidussi
  • 通讯作者:
    Stefano Vidussi

Peter Shalen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Shalen', 18)}}的其他基金

Hyperbolic Geometry and 3-Dimensional Topology
双曲几何和三维拓扑
  • 批准号:
    0504975
  • 财政年份:
    2005
  • 资助金额:
    $ 33.44万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Topology and Geometry of 3-Manifolds
数学科学:3-流形的拓扑和几何
  • 批准号:
    9626676
  • 财政年份:
    1996
  • 资助金额:
    $ 33.44万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Low Dimensional Topology and Infinite Group Theory
数学科学:低维拓扑和无限群论
  • 批准号:
    9302520
  • 财政年份:
    1993
  • 资助金额:
    $ 33.44万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Low Dimensional Topology and InfiniteGroup Theory
数学科学:低维拓扑和无穷群理论
  • 批准号:
    9001392
  • 财政年份:
    1990
  • 资助金额:
    $ 33.44万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Low-dimensional topology and infinitegroups
数学科学:低维拓扑和无限群
  • 批准号:
    8701804
  • 财政年份:
    1987
  • 资助金额:
    $ 33.44万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Group Representations and Geometric Topology
数学科学:群表示和几何拓扑
  • 批准号:
    8602433
  • 财政年份:
    1986
  • 资助金额:
    $ 33.44万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Group Representations and Geometric Topology
数学科学:群表示和几何拓扑
  • 批准号:
    8401307
  • 财政年份:
    1984
  • 资助金额:
    $ 33.44万
  • 项目类别:
    Continuing grant

相似国自然基金

2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
  • 批准号:
    11981240404
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
  • 批准号:
    20602003
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
  • 批准号:
    2247008
  • 财政年份:
    2023
  • 资助金额:
    $ 33.44万
  • 项目类别:
    Standard Grant
Geometry and computability in low-dimensional topology and group theory.
低维拓扑和群论中的几何和可计算性。
  • 批准号:
    2283616
  • 财政年份:
    2019
  • 资助金额:
    $ 33.44万
  • 项目类别:
    Studentship
RUI: Knots in Three-Dimensional Manifolds: Quantum Topology, Hyperbolic Geometry, and Applications
RUI:三维流形中的结:量子拓扑、双曲几何和应用
  • 批准号:
    1906323
  • 财政年份:
    2019
  • 资助金额:
    $ 33.44万
  • 项目类别:
    Standard Grant
Biology, Analysis, Geometry, Energies, Links: A Program on Low-dimensional Topology, Geometry, and Applications
生物学、分析、几何、能量、链接:低维拓扑、几何和应用程序
  • 批准号:
    1931930
  • 财政年份:
    2019
  • 资助金额:
    $ 33.44万
  • 项目类别:
    Standard Grant
Interactions Between Contact Geometry, Floer Theory and Low-Dimensional Topology
接触几何、弗洛尔理论和低维拓扑之间的相互作用
  • 批准号:
    1907654
  • 财政年份:
    2019
  • 资助金额:
    $ 33.44万
  • 项目类别:
    Standard Grant
The Topology and Geometry of Low-dimensional Manifolds
低维流形的拓扑和几何
  • 批准号:
    1832173
  • 财政年份:
    2018
  • 资助金额:
    $ 33.44万
  • 项目类别:
    Standard Grant
Geometry of non-Kaehler open complex manifolds and 4-dimensional topology
非凯勒开复流形的几何和 4 维拓扑
  • 批准号:
    17K14193
  • 财政年份:
    2017
  • 资助金额:
    $ 33.44万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Geometry of discrete groups and its applications to 3-dimensional topology
离散群的几何及其在三维拓扑中的应用
  • 批准号:
    17H02843
  • 财政年份:
    2017
  • 资助金额:
    $ 33.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Conference on low-dimensional topology and geometry
低维拓扑与几何会议
  • 批准号:
    1707524
  • 财政年份:
    2017
  • 资助金额:
    $ 33.44万
  • 项目类别:
    Standard Grant
Generalized complex structures, 4 dimensional differential topology, noncommutative algebraic geometry and derived category
广义复结构、4维微分拓扑、非交换代数几何和派生范畴
  • 批准号:
    16K13755
  • 财政年份:
    2016
  • 资助金额:
    $ 33.44万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了