Hyperbolic Geometry and 3-Dimensional Topology

双曲几何和三维拓扑

基本信息

  • 批准号:
    0504975
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-06-01 至 2010-05-31
  • 项目状态:
    已结题

项目摘要

The work supported by this grant is bringing to bear on the study ofhyperbolic 3-manifolds methods from the analytic theory of Kleiniangroups, geometric and algebraic topology, algebra and combinatorics.One group of projects aims at understanding, in a quantitative way,how the volume of a hyperbolic manifold reflects its underlyingtopology. Another project studies the relationship between thealgebraic rank of a hyperbolic 3- manifold and its Heegaardgenus. A third group of projects addresses the construction ofhyperbolic manifolds by the Dehn filling construction.A hyperbolic manifold is a space which is locally modelled on thenon-euclidean geometry of Lobachevsky, Bolyai and Gauss, in which thesum of the angles of a triangle is less than pi. Besides being offundamental importance for classical geometry and number theory,hyperbolic manifolds have long been known to play a central role inthree-dimensional topology. This has been newly confirmed byPerelman's announcement of a proof of Thurston's geometrizationconjecture.
该基金支持的工作是从Kleiniang群、几何和代数拓扑、代数和组合学的分析理论研究双曲3-流形方法。一组项目旨在以定量的方式理解双曲流形的体积如何反映其基础拓扑。 另一个项目研究了双曲三维流形的代数秩与其Heegaard亏格之间的关系。第三组项目解决了由Dehn填充构造双曲流形的构造问题。双曲流形是一个空间,它局部地以Lobachevsky、Bolyai和Gauss的非欧几何为模型,其中三角形的角之和小于π。 除了对经典几何学和数论的重要性之外,双曲流形在三维拓扑学中扮演着重要的角色。这一点最近被佩雷尔曼宣布的瑟斯顿几何化猜想的证明所证实。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Shalen其他文献

On two-generator subgroups of mapping torus groups
关于映射环面群的二元子群
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Naomi Andrew;IV EdgarA.Bering;Ilya Kapovich;Peter Shalen;Stefano Vidussi
  • 通讯作者:
    Stefano Vidussi

Peter Shalen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Shalen', 18)}}的其他基金

Topology and Geometry of 3-Dimensional Manifolds
3 维流形的拓扑和几何
  • 批准号:
    0204142
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Topology and Geometry of 3-Manifolds
数学科学:3-流形的拓扑和几何
  • 批准号:
    9626676
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Low Dimensional Topology and Infinite Group Theory
数学科学:低维拓扑和无限群论
  • 批准号:
    9302520
  • 财政年份:
    1993
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Low Dimensional Topology and InfiniteGroup Theory
数学科学:低维拓扑和无穷群理论
  • 批准号:
    9001392
  • 财政年份:
    1990
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Low-dimensional topology and infinitegroups
数学科学:低维拓扑和无限群
  • 批准号:
    8701804
  • 财政年份:
    1987
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Group Representations and Geometric Topology
数学科学:群表示和几何拓扑
  • 批准号:
    8602433
  • 财政年份:
    1986
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Group Representations and Geometric Topology
数学科学:群表示和几何拓扑
  • 批准号:
    8401307
  • 财政年份:
    1984
  • 资助金额:
    --
  • 项目类别:
    Continuing grant

相似国自然基金

2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
  • 批准号:
    11981240404
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
  • 批准号:
    20602003
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Conference: Higher dimensional algebraic geometry
会议:高维代数几何
  • 批准号:
    2327037
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
  • 批准号:
    2247008
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Probability measures in infinite dimensional spaces: random paths, random fields and random geometry
无限维空间中的概率度量:随机路径、随机场和随机几何
  • 批准号:
    RGPIN-2015-05968
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
K-Stability in Higher Dimensional Geometry
高维几何中的 K 稳定性
  • 批准号:
    2201349
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: A Transformative Approach for Teaching and Learning Geometry by Representing and Interacting with Three-dimensional Figures
职业:通过表示三维图形并与之交互来教学和学习几何的变革性方法
  • 批准号:
    2145517
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Finite dimensional integrable systems and differential geometry
有限维可积系统和微分几何
  • 批准号:
    DP210100951
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Probability measures in infinite dimensional spaces: random paths, random fields and random geometry
无限维空间中的概率度量:随机路径、随机场和随机几何
  • 批准号:
    RGPIN-2015-05968
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Three Dimensional Air Intake Geometry Optimization and Total Energy Efficiency Improvement of Supersonic Flight Vehicle Conidering Boundary Layer Ingestion
考虑边界层吸入的超音速飞行器三维进气几何优化及总能效提升
  • 批准号:
    21K04491
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometry of Surfaces and Four-Dimensional Manifolds
曲面几何和四维流形
  • 批准号:
    2104988
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Liouville Quantum Gravity, Two-Dimensional Random Geometry, and Conformal Field Theory
职业:刘维尔量子引力、二维随机几何和共形场论
  • 批准号:
    2046514
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了