Mathematical Sciences: Low-dimensional topology and infinitegroups
数学科学:低维拓扑和无限群
基本信息
- 批准号:8701804
- 负责人:
- 金额:$ 18.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1987
- 资助国家:美国
- 起止时间:1987-06-15 至 1990-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Professor Shalen will continue his work with H. Gillet on the structure of groups acting on lambda-trees. They will then explore applications to hyperbolic geometry, K-theory and linear groups. Shalen will also continue his work with P. Wagreich on growth functions of groups and applications to the study of volume and diameters of hyperbolic manifolds, as well as his work with G. Baumslag and J. Morgan in which properties of finitely presented groups are derived from studying their varieties of linear representations over fields. Professors Culler and Shalen will continue their work on Dehn surgery on knots with the ultimate goal of classifying surgeries that give manifolds with cyclic fundamental groups and settling the Property P conjecture. They will also work on extending the Cyclic Surgery Theorem to links, and interpreting the new polynomial invariants for knots and links in terms of varieties of groups and representations. Professor Culler will continue his work with K. Vogtmann on the outer automorphism group of a free group. They will develop further the analogy between this group and arithmetic groups. Culler will also study the dynamics of these outer automorphisms in analogy with Thurston's work on dynamics of surface automorphisms. In addition, he will work on constructing generalized buildings for a class of goups that includes these outer antomorphism groups as well as arithmetic groups and mapping class groups. Exploring these numerous strong connections between low- dimensional topology and group theory will advance both fields, with ultimate impact on mathematical physics and other heavy users of the machinery of modern mathematics, particularly on users of precise and concise ways of describing the symmetries of highly connected spaces.
Shalen教授将继续他与H.Gillet在作用于Lambda-Tree的群结构方面的工作。然后,他们将探索在双曲几何、K理论和线性群中的应用。Shalen还将继续他与P.Wgreich在群的增长函数方面的工作以及在双曲流形的体积和直径研究中的应用,以及他与G.Baumgrag和J.Morgan的工作,在这些工作中,有限表示群的性质是通过研究域上它们的线性表示的变化而得到的。卡勒和沙伦教授将继续他们在纽结上的Dehn手术的工作,最终目标是对给出具有循环基本群的流形的手术进行分类,并解决性质P猜想。他们还将致力于将循环运算定理推广到环,并根据各种群和表示来解释结和环的新的多项式不变量。卡勒教授将继续他与K.Vogtmann关于自由群的外自同构群的工作。他们将进一步发展这个群和算术群之间的类比。卡勒还将研究这些外自同构的动力学,类似于瑟斯顿关于表面自同构动力学的工作。此外,他将致力于为一类群构造广义建筑,该群包括这些外反同构群以及算术群和映射类群。探索低维拓扑学和群论之间的众多强大联系将推动这两个领域的发展,最终将对数学物理学和其他大量使用现代数学机器的用户产生影响,特别是对使用精确和简洁的方法描述高度连接空间的对称性的用户。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Shalen其他文献
On two-generator subgroups of mapping torus groups
关于映射环面群的二元子群
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Naomi Andrew;IV EdgarA.Bering;Ilya Kapovich;Peter Shalen;Stefano Vidussi - 通讯作者:
Stefano Vidussi
Peter Shalen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Shalen', 18)}}的其他基金
Hyperbolic Geometry and 3-Dimensional Topology
双曲几何和三维拓扑
- 批准号:
0504975 - 财政年份:2005
- 资助金额:
$ 18.06万 - 项目类别:
Continuing Grant
Topology and Geometry of 3-Dimensional Manifolds
3 维流形的拓扑和几何
- 批准号:
0204142 - 财政年份:2002
- 资助金额:
$ 18.06万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topology and Geometry of 3-Manifolds
数学科学:3-流形的拓扑和几何
- 批准号:
9626676 - 财政年份:1996
- 资助金额:
$ 18.06万 - 项目类别:
Standard Grant
Mathematical Sciences: Low Dimensional Topology and Infinite Group Theory
数学科学:低维拓扑和无限群论
- 批准号:
9302520 - 财政年份:1993
- 资助金额:
$ 18.06万 - 项目类别:
Continuing Grant
Mathematical Sciences: Low Dimensional Topology and InfiniteGroup Theory
数学科学:低维拓扑和无穷群理论
- 批准号:
9001392 - 财政年份:1990
- 资助金额:
$ 18.06万 - 项目类别:
Continuing Grant
Mathematical Sciences: Group Representations and Geometric Topology
数学科学:群表示和几何拓扑
- 批准号:
8602433 - 财政年份:1986
- 资助金额:
$ 18.06万 - 项目类别:
Standard Grant
Mathematical Sciences: Group Representations and Geometric Topology
数学科学:群表示和几何拓扑
- 批准号:
8401307 - 财政年份:1984
- 资助金额:
$ 18.06万 - 项目类别:
Continuing grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Mathematical Sciences: Low-Dimensional Topology and Gauge Theory
数学科学:低维拓扑和规范论
- 批准号:
9896376 - 财政年份:1998
- 资助金额:
$ 18.06万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometry and Low-Dimensional Topology in Group Theory
数学科学:群论中的几何和低维拓扑
- 批准号:
9703756 - 财政年份:1997
- 资助金额:
$ 18.06万 - 项目类别:
Standard Grant
Mathematical Sciences: Low-Dimensional Geometry and Topology
数学科学:低维几何和拓扑
- 批准号:
9704135 - 财政年份:1997
- 资助金额:
$ 18.06万 - 项目类别:
Continuing Grant
Mathematical Sciences: Low-Dimensional Topology and Gauge Theory
数学科学:低维拓扑和规范论
- 批准号:
9704204 - 财政年份:1997
- 资助金额:
$ 18.06万 - 项目类别:
Standard Grant
Mathematical Sciences: Symplectic and Contact Structures and Low Dimensional Topology
数学科学:辛和接触结构以及低维拓扑
- 批准号:
9625654 - 财政年份:1996
- 资助金额:
$ 18.06万 - 项目类别:
Standard Grant
Mathematical Sciences: Low Dimensional Manifolds: Their Symmetries and Topological Invariants
数学科学:低维流形:它们的对称性和拓扑不变量
- 批准号:
9529310 - 财政年份:1996
- 资助金额:
$ 18.06万 - 项目类别:
Standard Grant
Mathematical Sciences: Applications of Variational Problems on Riemann Surfaces to Low Dimensional Geometry
数学科学:黎曼曲面变分问题在低维几何中的应用
- 批准号:
9626565 - 财政年份:1996
- 资助金额:
$ 18.06万 - 项目类别:
Standard Grant
Mathematical Sciences: Low Dimensional Manifolds and Knot Theory
数学科学:低维流形和结理论
- 批准号:
9626550 - 财政年份:1996
- 资助金额:
$ 18.06万 - 项目类别:
Standard Grant
Mathematical Sciences: Low Dimensional Topology
数学科学:低维拓扑
- 批准号:
9501105 - 财政年份:1995
- 资助金额:
$ 18.06万 - 项目类别:
Continuing Grant
Mathematical Sciences: Problems in Knot Theory and Low- Dimensional Topology: Applications of Quasipositive Knots and Surfaces
数学科学:结理论和低维拓扑问题:拟正结和曲面的应用
- 批准号:
9504832 - 财政年份:1995
- 资助金额:
$ 18.06万 - 项目类别:
Standard Grant














{{item.name}}会员




