New Directions in Scattered Data Analysis via Radial and Related Basis Functions with Applications

通过径向和相关基函数进行分散数据分析的新方向及其应用

基本信息

  • 批准号:
    0204449
  • 负责人:
  • 金额:
    $ 20.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-08-01 至 2005-10-31
  • 项目状态:
    已结题

项目摘要

Error estimates for both interpolation and approximation are central in developing rigorous algorithms or numerical methods in any application. A major difficulty in scattered-data problems has been that the class of data-generating functions for which the methods are known to converge is much smaller than what one encounters in practice. This is problematic in numerically solving partial differential equations via Radial Basis Function collocation, since target functions need to be smoother than the basis functions, which is a major restriction in hyperbolic problems. One of the goals of this project is to obtain error estimates for a greatly expanded class of target functions. In our very recent work on interpolation via a restricted class of Spherical Basis Functions on the sphere, such estimates were obtained. This provides hope that the broader goal is attainable. Another important goal is to develop and implement rigorous, computationally efficient algorithms for numerical partial differential equation problems, neural networks, and problems from the geosciences requiring scattered-data surface fitting on the sphere.The investigation of scattered-data modeling is of great potential importance for the understanding of earth based phenomena of every kind. Fitting surfaces to meteorological or geophysical data collected via satellites or ground stations is a good example of such an application. Spherical basis functions (SBFs) have been used in such problems. Radial and periodic basis functions have been extensively employed in a variety of neural networks, including architectures used for direction-finding via phased-array radar. Very recently, they have been employed in grid-free numerical methods for solving partial differential equations, and to do computer graphics and computer aided design problems. Calculations assocaited with these are time consuming. Recent advances have ameliorated these difficulties and the work under this project will continue to improve efficiency.
在开发任何应用中的严格算法或数值方法时,插值法和近似法的误差估计都是核心。散乱数据问题的一个主要困难是,已知方法收敛的数据生成函数的类别比人们在实践中遇到的要小得多。这在通过径向基函数配置数值求解偏微分方程组时是有问题的,因为目标函数需要比基函数更光滑,这是双曲问题的一个主要限制。这个项目的目标之一是获得大大扩展的目标函数类的误差估计。在我们最近关于球面上有限类球面基函数插值的工作中,我们得到了这样的估计。这为更广泛的目标是可以实现的提供了希望。另一个重要的目标是开发和实现严格的、计算高效的算法来解决数值偏微分方程问题、神经网络问题以及地球科学中需要在球面上进行散乱数据曲面拟合的问题。散乱数据建模的研究对于理解各种地球现象具有重要的潜在意义。对通过卫星或地面站收集的气象或地球物理数据进行表面拟合就是这种应用的一个很好的例子。球面基函数(SBF)已被用于此类问题。径向和周期基函数已被广泛应用于各种神经网络中,包括用于相控阵雷达测向的结构。最近,它们被用于求解偏微分方程的无网格数值方法,以及计算机图形学和计算机辅助设计问题。与这些相关的计算是很耗时的。最近的进展改善了这些困难,该项目下的工作将继续提高效率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph Ward其他文献

Linguine technique for excision of lentigo maligna and poorly defined non-melanotic skin cancer – A case series
  • DOI:
    10.1016/j.jpra.2019.01.005
  • 发表时间:
    2019-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Joseph Ward;Grammatiki Mitsala;Marios Petsios;Antonio Orlando
  • 通讯作者:
    Antonio Orlando
SOME SPECTRAL PROBLEMS IN MATHEMATICAL PHYSICS A Dissertation by NGOC THANH DO Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY
数学物理学中的一些光谱问题 NGOC THANH DO 提交给德克萨斯州研究生和专业研究办公室的论文
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Kuchment;A. Abanov;G. Berkolaiko;Joseph Ward;E. Straube;P. Hoang;F. Sottile;I. Simonenko
  • 通讯作者:
    I. Simonenko
24. What outcomes should be measured in reconstructive breast surgery? The BRAVO (Breast Reconstruction and Valid Outcomes) Study
  • DOI:
    10.1016/j.ejso.2015.03.025
  • 发表时间:
    2015-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Shelley Potter;Chris Holcombe;Joseph Ward;Rhiannon Macefield;Simon Cawthorn;Rob Warr;Sherif Wilson;Eva Weiler-Mithoff;Diana Harcourt;Paula Williamson;Sara Brookes;Jane Blazeby
  • 通讯作者:
    Jane Blazeby
Application of the virial theorem for improving eigenvalue calculations of multiparticle systems
应用维里定理改进多粒子系统的特征值计算
Raising the standards of outcome reporting in reconstructive breast surgery – Initial results of the BRAVO (Breast Reconstruction and Valid Outcomes) study, a multicentre consensus process to develop a core outcome set
  • DOI:
    10.1016/j.ejso.2013.01.075
  • 发表时间:
    2013-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Shelley Potter;Joseph Ward;Simon Cawthorn;Christopher Holcombe;Rob Warr;Sherif Wilson;Rachel Tillett;Eva Weiler-Mithoff;Zoe Winters;Jane Barker;Caroline Oates;Diana Harcourt;Sara Brookes;Jane Blazeby
  • 通讯作者:
    Jane Blazeby

Joseph Ward的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph Ward', 18)}}的其他基金

Why risk a referendum? Reassessing the politics of the referendum in the UK.
为什么要冒全民公投的风险?
  • 批准号:
    ES/Y007581/1
  • 财政年份:
    2023
  • 资助金额:
    $ 20.82万
  • 项目类别:
    Fellowship
Understanding excess child and adolescent mortality in the United Kingdom compared with EU15+ countries
了解英国与欧盟 15 国相比过高的儿童和青少年死亡率
  • 批准号:
    MR/R00160X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 20.82万
  • 项目类别:
    Fellowship
Localized Kernel Bases: Theory and Applications to Meshless Methods
本地化内核基础:无网格方法的理论和应用
  • 批准号:
    1514789
  • 财政年份:
    2015
  • 资助金额:
    $ 20.82万
  • 项目类别:
    Standard Grant
Localized Kernel Bases with Application to Meshless Methods
应用于无网格方法的本地化内核库
  • 批准号:
    1211566
  • 财政年份:
    2012
  • 资助金额:
    $ 20.82万
  • 项目类别:
    Standard Grant
Analysis and Synthesis of Scattered Data on Surfaces via Radial and Related Basis Functions
通过径向和相关基函数分析和综合表面上的散射数据
  • 批准号:
    0807033
  • 财政年份:
    2008
  • 资助金额:
    $ 20.82万
  • 项目类别:
    Standard Grant
Scattered Data Analysis and Synthesis via Radial Basis Functions and Tight Spherical Frames
通过径向基函数和紧球面框架进行分散数据分析和综合
  • 批准号:
    0504353
  • 财政年份:
    2005
  • 资助金额:
    $ 20.82万
  • 项目类别:
    Standard Grant
Approximations of Functions from Scattered Data: Theory and Applications
分散数据的函数逼近:理论与应用
  • 批准号:
    9971276
  • 财政年份:
    1999
  • 资助金额:
    $ 20.82万
  • 项目类别:
    Standard Grant

相似海外基金

New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
  • 批准号:
    EP/Z000688/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.82万
  • 项目类别:
    Research Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342244
  • 财政年份:
    2024
  • 资助金额:
    $ 20.82万
  • 项目类别:
    Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306378
  • 财政年份:
    2024
  • 资助金额:
    $ 20.82万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342245
  • 财政年份:
    2024
  • 资助金额:
    $ 20.82万
  • 项目类别:
    Standard Grant
Manchester Metropolitan University and Future Directions CIC KTP 23_24 R3
曼彻斯特城市大学和未来方向 CIC KTP 23_24 R3
  • 批准号:
    10083223
  • 财政年份:
    2024
  • 资助金额:
    $ 20.82万
  • 项目类别:
    Knowledge Transfer Network
Conference: Future Directions for Mathematics Education Research, Policy, and Practice
会议:数学教育研究、政策和实践的未来方向
  • 批准号:
    2342550
  • 财政年份:
    2024
  • 资助金额:
    $ 20.82万
  • 项目类别:
    Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306379
  • 财政年份:
    2024
  • 资助金额:
    $ 20.82万
  • 项目类别:
    Standard Grant
CAREER: New directions in the study of zeros and moments of L-functions
职业:L 函数零点和矩研究的新方向
  • 批准号:
    2339274
  • 财政年份:
    2024
  • 资助金额:
    $ 20.82万
  • 项目类别:
    Continuing Grant
Participant Support for Biomechanists Outlining New Directions Workshop (USA and Italy: BOND); Naples, Italy; 24-27 September 2023
生物力学专家概述新方向研讨会的参与者支持(美国和意大利:BOND);
  • 批准号:
    2314385
  • 财政年份:
    2023
  • 资助金额:
    $ 20.82万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
  • 批准号:
    2327010
  • 财政年份:
    2023
  • 资助金额:
    $ 20.82万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了