Localized Kernel Bases with Application to Meshless Methods

应用于无网格方法的本地化内核库

基本信息

  • 批准号:
    1211566
  • 负责人:
  • 金额:
    $ 22.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-06-15 至 2016-05-31
  • 项目状态:
    已结题

项目摘要

Problems involving the analysis and synthesis of data taken from scattered sites in space or on surfaces arise in diverse fields -- computer-aided design graphics, data mining, medical imaging, learning networks, geoscience, and many other areas. This award will support the development of new methods and tools for attacking the analysis and synthesis of scattered data -- i.e. data collected from non-uniformly distributed sites -- by means of kernel methods. The investigators supported by this awards recently discovered highly localized bases derived from special kernels on manifolds, and this breakthrough will play a key role both in the problems proposed and in their approach to investigating them. The problem of finding a good, stable basis for an approximation space made from kernels is closely connected with determining well-localized bases at low computational cost. One of the major difficulties in dealing with kernel interpolation or least squares approximation with the ``standard'' kernel basis is that collocation matrices are full and frequently ill conditioned. Recent work by the investigators and collaborators showed that Lagrange-type interpolating functions associated with certain kernels are exponentially localized about their centers and, from numerical experiments, appear to be computationally inexpensive. This award will support exploring the full potential of these newly discovered basis functions.The need for analyzing and modeling data taken from scattered, irregularly placed sites arises frequently in diverse fields: computer-aided design graphics, data mining, medical imaging, learning networks, and geoscience, in addition to many other areas. For example, weather prediction or climate modeling is based on geophysical data collected at scattered sites, by sensors on satellites, ground stations, or stations at sea. Carrying out such tasks presents difficulties for traditional methods, which are based on collecting data at uniformly placed sites or which require constructing ``meshes'' (think wire fence) that must be carefully tailored to deal with the data sites involved. Newer methods, the so-called kernel methods, do not require such meshes and can handle scattered data. This award will further the development of these kernel methods, making them easy to use, faster, less expensive to implement, and capable of handling data from a hundred thousand or more sites. It will provide support for graduate students, who will be trained in both the theoretical and the applied aspects of using and developing these methods.
涉及从空间或表面上的分散站点获取的数据的分析和合成的问题出现在不同的领域-计算机辅助设计图形,数据挖掘,医学成像,学习网络,地球科学和许多其他领域。该奖项将支持开发新的方法和工具,通过核心方法对分散的数据(即从非均匀分布的站点收集的数据)进行分析和综合。该奖项支持的研究人员最近发现了来自流形上特殊内核的高度局部化的基础,这一突破将在提出的问题和他们的研究方法中发挥关键作用。 为由核构成的近似空间找到一个好的、稳定的基的问题与以低计算成本确定良好局部化的基密切相关。在处理核插值或最小二乘逼近与“标准”核基的主要困难之一是,配置矩阵是充分的,经常病态。研究人员和合作者最近的工作表明,与某些内核相关的拉格朗日型插值函数在其中心呈指数局部化,并且从数值实验来看,似乎在计算上是廉价的。该奖项将支持探索这些新发现的基本功能的全部潜力。对从分散的、不规则放置的站点获取的数据进行分析和建模的需求在不同的领域中频繁出现:计算机辅助设计图形、数据挖掘、医学成像、学习网络和地球科学,以及许多其他领域。例如,天气预测或气候建模是基于在分散的地点收集的地球物理数据,通过卫星上的传感器,地面站或海上站。执行这些任务给传统方法带来了困难,因为传统方法的基础是在统一放置的地点收集数据,或者需要建造“网”(想想铁丝网),这些网必须经过精心设计,以处理所涉及的数据地点。较新的方法,所谓的核方法,不需要这样的网格,可以处理分散的数据。该奖项将进一步开发这些内核方法,使它们易于使用,更快,实现成本更低,并且能够处理来自10万或更多站点的数据。它将为研究生提供支持,他们将在使用和开发这些方法的理论和应用方面接受培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph Ward其他文献

Linguine technique for excision of lentigo maligna and poorly defined non-melanotic skin cancer – A case series
  • DOI:
    10.1016/j.jpra.2019.01.005
  • 发表时间:
    2019-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Joseph Ward;Grammatiki Mitsala;Marios Petsios;Antonio Orlando
  • 通讯作者:
    Antonio Orlando
SOME SPECTRAL PROBLEMS IN MATHEMATICAL PHYSICS A Dissertation by NGOC THANH DO Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY
数学物理学中的一些光谱问题 NGOC THANH DO 提交给德克萨斯州研究生和专业研究办公室的论文
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Kuchment;A. Abanov;G. Berkolaiko;Joseph Ward;E. Straube;P. Hoang;F. Sottile;I. Simonenko
  • 通讯作者:
    I. Simonenko
24. What outcomes should be measured in reconstructive breast surgery? The BRAVO (Breast Reconstruction and Valid Outcomes) Study
  • DOI:
    10.1016/j.ejso.2015.03.025
  • 发表时间:
    2015-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Shelley Potter;Chris Holcombe;Joseph Ward;Rhiannon Macefield;Simon Cawthorn;Rob Warr;Sherif Wilson;Eva Weiler-Mithoff;Diana Harcourt;Paula Williamson;Sara Brookes;Jane Blazeby
  • 通讯作者:
    Jane Blazeby
Application of the virial theorem for improving eigenvalue calculations of multiparticle systems
应用维里定理改进多粒子系统的特征值计算
Raising the standards of outcome reporting in reconstructive breast surgery – Initial results of the BRAVO (Breast Reconstruction and Valid Outcomes) study, a multicentre consensus process to develop a core outcome set
  • DOI:
    10.1016/j.ejso.2013.01.075
  • 发表时间:
    2013-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Shelley Potter;Joseph Ward;Simon Cawthorn;Christopher Holcombe;Rob Warr;Sherif Wilson;Rachel Tillett;Eva Weiler-Mithoff;Zoe Winters;Jane Barker;Caroline Oates;Diana Harcourt;Sara Brookes;Jane Blazeby
  • 通讯作者:
    Jane Blazeby

Joseph Ward的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph Ward', 18)}}的其他基金

Why risk a referendum? Reassessing the politics of the referendum in the UK.
为什么要冒全民公投的风险?
  • 批准号:
    ES/Y007581/1
  • 财政年份:
    2023
  • 资助金额:
    $ 22.95万
  • 项目类别:
    Fellowship
Understanding excess child and adolescent mortality in the United Kingdom compared with EU15+ countries
了解英国与欧盟 15 国相比过高的儿童和青少年死亡率
  • 批准号:
    MR/R00160X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 22.95万
  • 项目类别:
    Fellowship
Localized Kernel Bases: Theory and Applications to Meshless Methods
本地化内核基础:无网格方法的理论和应用
  • 批准号:
    1514789
  • 财政年份:
    2015
  • 资助金额:
    $ 22.95万
  • 项目类别:
    Standard Grant
Analysis and Synthesis of Scattered Data on Surfaces via Radial and Related Basis Functions
通过径向和相关基函数分析和综合表面上的散射数据
  • 批准号:
    0807033
  • 财政年份:
    2008
  • 资助金额:
    $ 22.95万
  • 项目类别:
    Standard Grant
Scattered Data Analysis and Synthesis via Radial Basis Functions and Tight Spherical Frames
通过径向基函数和紧球面框架进行分散数据分析和综合
  • 批准号:
    0504353
  • 财政年份:
    2005
  • 资助金额:
    $ 22.95万
  • 项目类别:
    Standard Grant
New Directions in Scattered Data Analysis via Radial and Related Basis Functions with Applications
通过径向和相关基函数进行分散数据分析的新方向及其应用
  • 批准号:
    0204449
  • 财政年份:
    2002
  • 资助金额:
    $ 22.95万
  • 项目类别:
    Continuing Grant
Approximations of Functions from Scattered Data: Theory and Applications
分散数据的函数逼近:理论与应用
  • 批准号:
    9971276
  • 财政年份:
    1999
  • 资助金额:
    $ 22.95万
  • 项目类别:
    Standard Grant

相似国自然基金

多kernel环境下通用图形处理器缓存子系统性能优化研究
  • 批准号:
    62162002
  • 批准年份:
    2021
  • 资助金额:
    36 万元
  • 项目类别:
    地区科学基金项目
玉米Edk1(Early delayed kernel 1)基因的克隆及其在胚乳早期发育中的功能研究
  • 批准号:
    31871625
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于Kernel算子的仿射非线性系统故障诊断与容错控制研究及应用
  • 批准号:
    61473004
  • 批准年份:
    2014
  • 资助金额:
    83.0 万元
  • 项目类别:
    面上项目
非向量型Kernel学习机及其对动态形状模板的应用
  • 批准号:
    60373090
  • 批准年份:
    2003
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
  • 批准号:
    2345339
  • 财政年份:
    2023
  • 资助金额:
    $ 22.95万
  • 项目类别:
    Standard Grant
CIF: Small: An Algebraic, Convex, and Scalable Framework for Kernel Learning with Activation Functions
CIF:小型:具有激活函数的核学习的代数、凸性和可扩展框架
  • 批准号:
    2323532
  • 财政年份:
    2023
  • 资助金额:
    $ 22.95万
  • 项目类别:
    Standard Grant
Analysis of the effect of integral kernel shape on pattern formation in nonlocal reaction-diffusion equations
积分核形状对非局部反应扩散方程模式形成的影响分析
  • 批准号:
    23K13013
  • 财政年份:
    2023
  • 资助金额:
    $ 22.95万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Field Computation Based Kernel for Vector 3D Printing
基于现场计算的矢量 3D 打印内核
  • 批准号:
    EP/X032213/1
  • 财政年份:
    2023
  • 资助金额:
    $ 22.95万
  • 项目类别:
    Fellowship
CAREER: Taming the size, complexity and longevity of OS kernels via enhanced OS kernel extensions
职业:通过增强的操作系统内核扩展来控制操作系统内核的大小、复杂性和寿命
  • 批准号:
    2236966
  • 财政年份:
    2023
  • 资助金额:
    $ 22.95万
  • 项目类别:
    Continuing Grant
Best evaluation of Sobolev inequality using reproducing kernel and study of its application to science and engineering
再现核索博列夫不等式的最佳评价及其科学与工程应用研究
  • 批准号:
    23K03239
  • 财政年份:
    2023
  • 资助金额:
    $ 22.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Acceleration of kernel with random access and data recurrence on many computer architectures
在许多计算机体系结构上通过随机访问和数据重现来加速内核
  • 批准号:
    22K12057
  • 财政年份:
    2022
  • 资助金额:
    $ 22.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Kernel-based control
基于内核的控制
  • 批准号:
    2734041
  • 财政年份:
    2022
  • 资助金额:
    $ 22.95万
  • 项目类别:
    Studentship
Deep Kernel Machines
深层内核机器
  • 批准号:
    2740530
  • 财政年份:
    2022
  • 资助金额:
    $ 22.95万
  • 项目类别:
    Studentship
Improvement of nonparametric inference based on kernel type estimation and resampling method, and its application
基于核类型估计和重采样方法的非参数推理改进及其应用
  • 批准号:
    22K11939
  • 财政年份:
    2022
  • 资助金额:
    $ 22.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了