Symplectic Field Theory and related topics
辛场论及相关主题
基本信息
- 批准号:0204603
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2009-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0204603Yakov Eliashberg The proposal is devoted to Symplectic Field Theory (SFT) whose framework was recently described by A. Givental, H. Hofer and the author of this proposal. SFT is a large project which lies on the borderline between Symplectic Geometry, Hamiltonian Dynamics, Enumerative Algebraic Geometry, Low-dimensional Topology, Theory of Integrable Systems in Mathematics, as well as String Theory and Mirror Symmetry in Theoretical Physics. Among the goals of the theory: - definition of new, SFT-based invariants of symplectic and contact manifolds and their Lagrangian and Legendrian submanifolds; - applications to the Low-dimensional topology; - development of new tools for proving enumerative results about periodic orbits of Hamiltonian systems; - understanding of the appearance of integrable hierarchies in Gromov-Witten theory. Symplectic Field Theory has already proved to have important applications. In particular, the ideas of the SFT were instrumental in the solution of several old outstanding questions in Symplectic Geometry and Hamiltonian Dynamics. There is a hope that some current research in the SFT may bring some breakthrough in the low-dimensional topology. Further development of the theory should also bring new applications not only inside Mathematics, but possibly in some areas of Theoretical Physics, including String Theory and Mirror Symmetry. Besides developing new applications the work under this project will also concentrate on building the rigorous foundations of the SFT.
DMS-0204603Yakov Eliashberg 该提案致力于辛场论 (SFT),其框架最近由 A. Givetal、H. Hofer 和该提案的作者描述。 SFT是一个介于辛几何、哈密顿动力学、枚举代数几何、低维拓扑、数学中的可积系统理论以及理论物理中的弦理论和镜像对称之间的大型项目。该理论的目标包括: - 定义新的、基于 SFT 的辛流形和接触流形及其拉格朗日和勒让德子流形的不变量; - 在低维拓扑中的应用; - 开发新工具来证明哈密顿系统周期轨道的枚举结果; - 了解格罗莫夫-维滕理论中可积层次结构的出现。 辛场论已经被证明具有重要的应用。特别是,SFT 的思想有助于解决辛几何和哈密顿动力学中几个古老的悬而未决的问题。目前 SFT 的一些研究有望在低维拓扑方面带来一些突破。该理论的进一步发展不仅会在数学领域带来新的应用,而且可能会在理论物理的某些领域(包括弦理论和镜像对称)带来新的应用。除了开发新的应用程序外,该项目的工作还将集中于构建 SFT 的严格基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yakov Eliashberg其他文献
Flat real analytic circle bundles and the Mather-Thurston map
平实解析圆束和 Mather-Thurston 映射
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yakov Eliashberg;Noboru Ogawa;Toru Yoshiyasu;M. Adachi;小川 竜;三松 佳彦;Yoshihiko Mitsumatsu - 通讯作者:
Yoshihiko Mitsumatsu
Lefschetz 的臨界点
莱夫谢茨临界点
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yakov Eliashberg;Noboru Ogawa;Toru Yoshiyasu;M. Adachi;小川 竜;三松 佳彦 - 通讯作者:
三松 佳彦
実解析的平坦円周束の Mather-Thurston map
实解析平周束的马瑟-瑟斯顿图
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yakov Eliashberg;Noboru Ogawa;Toru Yoshiyasu;M. Adachi;小川 竜;三松 佳彦;Yoshihiko Mitsumatsu;三松 佳彦;三松 佳彦 - 通讯作者:
三松 佳彦
カスプ特異点の Milnor fiber の Lefschetz fibration と K3 曲面の位相的分解
Milnor 纤维在尖点奇点处的 Lefschetz 纤维和 K3 表面的拓扑分解
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yakov Eliashberg;Noboru Ogawa;Toru Yoshiyasu;M. Adachi;小川 竜;三松 佳彦;Yoshihiko Mitsumatsu;三松 佳彦 - 通讯作者:
三松 佳彦
カスプ特異点および単純楕円特異点の Milnor fiber 上の Lefschetz fibration
具有尖点奇点和简单椭圆奇点的 Milnor 纤维上的 Lefschetz 纤维化
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yakov Eliashberg;Noboru Ogawa;Toru Yoshiyasu;M. Adachi;小川 竜;三松 佳彦;Yoshihiko Mitsumatsu;三松 佳彦;三松 佳彦;Masanori Adachi;Masanori Adachi;Masanori Adachi;Masanori Adachi;Masanori Adachi;小川 竜;小川 竜;小川竜;Masanori Adachi;三松佳彦 - 通讯作者:
三松佳彦
Yakov Eliashberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yakov Eliashberg', 18)}}的其他基金
Conformal Symplectic Structures, Contact Structures, Foliations, and Their Interactions
共形辛结构、接触结构、叶状结构及其相互作用
- 批准号:
2104473 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
Symplectic Topology of Weinstein Manifolds and Related Topics
温斯坦流形的辛拓扑及相关主题
- 批准号:
1807270 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Continuing Grant
Conference on Symplectic Geometry and Topology at the International Center for Mathematical Sciences
国际数学科学中心辛几何和拓扑会议
- 批准号:
1608194 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
Towards the Border of Symplectic Rigidity and Flexibility
走向辛刚性与柔性的边界
- 批准号:
1505910 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Continuing Grant
Symplectic Field Theory, its interactions and applications
辛场论、其相互作用和应用
- 批准号:
0707103 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
Workshop: "Algebraic structures in Symplectic Field Theory and Applications"
研讨会:“辛场论中的代数结构及其应用”
- 批准号:
0616617 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Holomorphic Curves in Low Dimensional Topology
FRG:低维拓扑中的全纯曲线
- 批准号:
0244663 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Continuing Grant
Workshop on Low-Dimensional Contact Geometry
低维接触几何研讨会
- 批准号:
0075477 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Standard Grant
Symplectic and Contact Geometry and Topology
辛和接触几何和拓扑
- 批准号:
9971965 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
新型Field-SEA多尺度溶剂模型的开发与应用研究
- 批准号:21506066
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Representation Theory and Symplectic Geometry Inspired by Topological Field Theory
拓扑场论启发的表示论和辛几何
- 批准号:
2401178 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
symplectic field theory の応用
辛场论的应用
- 批准号:
21K13789 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
computation and applications of symplectic field theory
辛场论的计算与应用
- 批准号:
19K23404 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Symplectic Field Theory VIII: Symplectic Homology
辛场论八:辛同调
- 批准号:
1636665 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: The symplectic category, Floer field theory, and relations to gauge theory and topology
职业:辛范畴、弗洛尔场论以及与规范理论和拓扑的关系
- 批准号:
0844188 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Symplectic Field Theory and Low-Dimensional Topology
职业:辛场论和低维拓扑
- 批准号:
0846346 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Continuing Grant
An International Conference on: New Challenges and Perspectives in Symplectic Field Theory
国际会议:辛场论的新挑战和前景
- 批准号:
0649446 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
Symplectic Field Theory, its interactions and applications
辛场论、其相互作用和应用
- 批准号:
0707103 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
Workshop: "Algebraic structures in Symplectic Field Theory and Applications"
研讨会:“辛场论中的代数结构及其应用”
- 批准号:
0616617 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




