Symplectic Field Theory VIII: Symplectic Homology

辛场论八:辛同调

基本信息

  • 批准号:
    1636665
  • 负责人:
  • 金额:
    $ 2.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2017-05-31
  • 项目状态:
    已结题

项目摘要

This award provides partial travel support for US based participants of the workshop on Symplectic Homology to be held on August 8 - 12, 2016, at the Humboldt University, Berlin. Symplectic geometry is the fundamental geometry underlying classical mechanics and dynamics. The set of possible states of a macroscopic physical system is described by a symplectic manifold, and the geometry of this symplectic manifold is essential for understanding how the physical system evolves over time. Symplectic field theory (SFT), initiated in 2000 by Eliashberg-Givental-Hofer, is a major program for understanding symplectic geometry by counting pseudoholomorphic curves (a kind of area-minimizing surfaces) in symplectic manifolds, and performing these counts by cutting symplectic manifolds into simpler pieces. Since 2005, a series of workshops on particular aspects of SFT has been held at various locations in Germany, and these workshops have played a key role in the development of the subject. Each such workshop consists of a week of mini-courses, research lectures, and discussions, preceded by a weekend of introductory courses reviewing necessary background material. In August 2016, the eighth SFT workshop will be held in Berlin, and this grant will provide travel support to enable junior US-based participants to participate in the workshop.The specific topic of the workshop is symplectic homology. In the past decade, symplectic homology has emerged as a central tool in symplectic and contact geometry and topology, with a number of spectacular applications. The uses of symplectic homology include distinguishing exotic Stein structures and contact structures, detecting Reeb orbits of vector fields, and obstructing Lagrangian cobordisms. In addition, a closely related invariant, the wrapped Fukaya category, plays an essential role in recent developments in mirror symmetry. This workshop will bring together the major recent advances in the structure and applications of symplectic homology, in an in-depth and coordinated manner, in order to form this vital subject into a coherent whole and make it accessible to a wider audience. The centerpiece of the workshop will consist of mini-courses by Tobias Ekholm on the Legendrian surgery formula and its applications, Alexandru Oancea on the symplectic Eilenberg-Steenrod axioms, and Mark McLean on wrapped Floer cohomology and affine varieties. In addition there will be five research lectures and a weekend precourse with six background talks. Sending US participants to this workshop will enable US mathematicians to keep up with the latest developments in symplectic geometry and contribute to the future of the subject. More details about the workshop can be found at https://www.mathematik.hu-berlin.de/~wendl/SFT8/.
该奖项为辛同源研讨会的美国参与者提供部分旅行支持,该研讨会将于2016年8月8日至12日在柏林洪堡大学举行。辛几何是经典力学和动力学的基础几何。宏观物理系统的可能状态集由辛流形描述,而辛流形的几何对于理解物理系统如何随时间演化是必不可少的。辛场论(SFT)由Eliashberg-Givental-霍费尔于2000年提出,是一个通过计算辛流形中的伪全纯曲线(一种面积最小化曲面),并通过将辛流形切割成更简单的片段来执行这些计算来理解辛几何的主要程序。自2005年以来,在德国各地举办了一系列关于SFT特定方面的讲习班,这些讲习班在该主题的发展中发挥了关键作用。每个这样的研讨会包括一个星期的迷你课程,研究讲座和讨论,由一个周末的介绍性课程审查必要的背景材料之前。2016年8月,第八届SFT研讨会将在柏林举行,该资助将提供差旅支持,使美国的初级参与者能够参加研讨会。研讨会的具体主题是辛同源性。在过去的十年中,辛同调已经成为辛几何和接触几何与拓扑学的一个重要工具,并有许多引人注目的应用。辛同调的应用包括区分奇异的Stein结构和接触结构,检测向量场的Reeb轨道,以及阻塞拉格朗日配边。此外,一个密切相关的不变量,包裹福谷类别,在镜像对称的最新发展中起着至关重要的作用。本次研讨会将汇集辛同源性的结构和应用方面的主要最新进展,以深入和协调的方式,以将这一重要主题形成一个连贯的整体,并使其更广泛的受众。研讨会的核心内容将包括Tobias Ekholm关于Legendrian手术公式及其应用的迷你课程,Alexandru奥安恰关于辛Eilenberg-Steenrod公理,Mark姆克林关于包装Floer上同调和仿射变种。此外,还将有五个研究讲座和一个周末的预备课程,其中包括六个背景讲座。派遣美国参与者参加这个研讨会将使美国数学家能够跟上辛几何的最新发展,并为该学科的未来做出贡献。有关研讨会的更多详细信息,请访问https://www.mathematik.hu-berlin.de/~wendl/SFT8/。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Hutchings其他文献

Michael Hutchings的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Hutchings', 18)}}的其他基金

Contact homology, dynamics, and embeddings
接触同源性、动力学和嵌入
  • 批准号:
    2005437
  • 财政年份:
    2020
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Standard Grant
Current Trends in Symplectic Topology
辛拓扑的当前趋势
  • 批准号:
    1916934
  • 财政年份:
    2019
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Standard Grant
Contact Homology and Quantitative Symplectic Geometry
联系同调与定量辛几何
  • 批准号:
    1708899
  • 财政年份:
    2017
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Continuing Grant
The dynamics of antimicrobial resistance gene prevalence on a commercial pig farm: implications for policy
商业养猪场抗菌素耐药性基因流行的动态:对政策的影响
  • 批准号:
    NE/N019806/1
  • 财政年份:
    2016
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Research Grant
IHES summer school on Moduli Problems in Symplectic Geometry
IHES 辛几何模问题暑期学校
  • 批准号:
    1510109
  • 财政年份:
    2015
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Standard Grant
Floer homology and contact and symplectic geometry
弗洛尔同调性以及接触几何和辛几何
  • 批准号:
    1406312
  • 财政年份:
    2014
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Standard Grant
Floer homology and low dimensional contact and symplectic geometry
Florer 同调与低维接触和辛几何
  • 批准号:
    1105820
  • 财政年份:
    2011
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Standard Grant
Pseudoholomorphic curves in low-dimensional topology
低维拓扑中的伪全纯曲线
  • 批准号:
    0806037
  • 财政年份:
    2008
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Standard Grant
Pseudoholomorphic curves in low-dimensional topology
低维拓扑中的伪全纯曲线
  • 批准号:
    0505884
  • 财政年份:
    2005
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Continuing Grant
Pseudoholomorphic Curves in Low-Dimensional Topology
低维拓扑中的伪全纯曲线
  • 批准号:
    0204681
  • 财政年份:
    2002
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Continuing Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
新型Field-SEA多尺度溶剂模型的开发与应用研究
  • 批准号:
    21506066
  • 批准年份:
    2015
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Representation Theory and Symplectic Geometry Inspired by Topological Field Theory
拓扑场论启发的表示论和辛几何
  • 批准号:
    2401178
  • 财政年份:
    2024
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Standard Grant
symplectic field theory の応用
辛场论的应用
  • 批准号:
    21K13789
  • 财政年份:
    2021
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
computation and applications of symplectic field theory
辛场论的计算与应用
  • 批准号:
    19K23404
  • 财政年份:
    2019
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Foundations of Symplectic Field Theory
辛场论基础
  • 批准号:
    157897074
  • 财政年份:
    2009
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Research Grants
CAREER: The symplectic category, Floer field theory, and relations to gauge theory and topology
职业:辛范畴、弗洛尔场论以及与规范理论和拓扑的关系
  • 批准号:
    0844188
  • 财政年份:
    2009
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Standard Grant
CAREER: Symplectic Field Theory and Low-Dimensional Topology
职业:辛场论和低维拓扑
  • 批准号:
    0846346
  • 财政年份:
    2009
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Continuing Grant
An International Conference on: New Challenges and Perspectives in Symplectic Field Theory
国际会议:辛场论的新挑战和前景
  • 批准号:
    0649446
  • 财政年份:
    2007
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Standard Grant
Symplectic Field Theory, its interactions and applications
辛场论、其相互作用和应用
  • 批准号:
    0707103
  • 财政年份:
    2007
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Continuing Grant
Workshop: "Algebraic structures in Symplectic Field Theory and Applications"
研讨会:“辛场论中的代数结构及其应用”
  • 批准号:
    0616617
  • 财政年份:
    2006
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Standard Grant
Workshop on Symplectic Field Theory; May 14-20, 2005; Leipzig, Germany
辛场论研讨会;
  • 批准号:
    0505968
  • 财政年份:
    2005
  • 资助金额:
    $ 2.23万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了