CAREER: Symplectic Field Theory and Low-Dimensional Topology

职业:辛场论和低维拓扑

基本信息

  • 批准号:
    0846346
  • 负责人:
  • 金额:
    $ 40.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

This project uses holomorphic curves to study questions in the intersection of symplectic geometry and low-dimensional topology. One main goal is developing an algebraic framework for the relative version of Symplectic Field Theory, with applications to contact geometry and knot theory; significant partial progress has recently been made by the Principal Investigator and other researchers. A related goal is studying the smooth topology of low-dimensional objects (e.g., knots and three- and four-manifolds) via the Symplectic Field Theory of cotangent bundles. The Principal Investigator has previously used this strategy to introduce a knot invariant called knot contact homology, which has partially understood connections to string topology. This project will develop the theory of knot contact homology by studying its generalization in Symplectic Field Theory and extending it to invariants of low-dimensional manifolds. Possible applications include relations to similar homological invariants such as Heegaard Floer homology and Khovanov homology, and new approaches to problems in low-dimensional topology such as knot concordance and distinguishing smooth structures on manifolds.Low-dimensional topology, or the study of shapes in three and four dimensions, is a classical subject of paramount importance in mathematics and of natural interest to other sciences, especially physics. In recent years, many fundamental and longstanding open problems in low-dimensional topology have proven remarkably amenable to new techniques from a different mathematical field, symplectic geometry. Much of this progress has involved the study of holomorphic curves in symplectic manifolds, which has close ties to string theory in physics. The Principal Investigator will use his past work on holomorphic curves within the framework of Symplectic Field Theory to develop new invariants of topological structures such as knots and three-dimensional spaces. This will likely have interesting applications to low-dimensional topology, including a long-term goal to resolve the still-unsolved smooth four-dimensional Poincare conjecture using symplectic techniques. The Principal Investigator will also pursue several educational endeavors, including the development of a new general-interest course for undergraduates, introducing methods of mathematical reasoning through analysis of patterns in nature, the arts, and everyday life.
本计画利用全纯曲线来研究辛几何与低维拓扑的交集问题。一个主要目标是开发一个代数框架的相对版本的辛场论,与应用接触几何和纽结理论;重大的部分进展最近已取得的主要研究人员和其他研究人员。一个相关的目标是研究低维对象的光滑拓扑(例如,结和三个和四个流形)通过余切丛的辛场论。主要研究者以前使用这种策略引入了一个称为结接触同源的结不变量,它部分理解了与弦拓扑的连接。本计画将研究纽结接触同调理论在辛场论中的推广,并将其延伸至低维流形的不变量,以发展纽结接触同调理论。可能的应用包括关系到类似的同调不变量,如Heegaard Floer同调和Khovanov同调,和新的方法来解决低维拓扑问题,如结协调和区分流形上的光滑结构。低维拓扑,或三维和四维形状的研究,是数学中至关重要的经典课题,也是其他科学,特别是物理学的自然兴趣。近年来,低维拓扑学中许多基本的和长期存在的开放问题已经被证明非常适合于来自不同数学领域的新技术,辛几何。这些进展大多涉及辛流形中全纯曲线的研究,这与物理学中的弦理论有着密切的联系。首席研究员将利用他过去在辛场论框架内对全纯曲线的研究来开发新的拓扑结构不变量,如结和三维空间。这可能会在低维拓扑中有有趣的应用,包括使用辛技术解决尚未解决的光滑四维庞加莱猜想的长期目标。首席研究员还将从事几项教育工作,包括为本科生开发新的通用兴趣课程,通过分析自然,艺术和日常生活中的模式引入数学推理方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lenhard Ng其他文献

Lenhard Ng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lenhard Ng', 18)}}的其他基金

Holomorphic Invariants of Knots and Contact Manifolds
结和接触流形的全纯不变量
  • 批准号:
    2003404
  • 财政年份:
    2020
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Continuing Grant
Holomorphic Invariants in Symplectic Topology
辛拓扑中的全纯不变量
  • 批准号:
    1707652
  • 财政年份:
    2017
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Continuing Grant
Knots and contact topology through holomorphic curves
通过全纯曲线的结和接触拓扑
  • 批准号:
    1406371
  • 财政年份:
    2014
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Continuing Grant
Holomorphic Curves and Low-Dimensional Topology
全纯曲线和低维拓扑
  • 批准号:
    0706777
  • 财政年份:
    2007
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Standard Grant

相似海外基金

Representation Theory and Symplectic Geometry Inspired by Topological Field Theory
拓扑场论启发的表示论和辛几何
  • 批准号:
    2401178
  • 财政年份:
    2024
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Standard Grant
symplectic field theory の応用
辛场论的应用
  • 批准号:
    21K13789
  • 财政年份:
    2021
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
computation and applications of symplectic field theory
辛场论的计算与应用
  • 批准号:
    19K23404
  • 财政年份:
    2019
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Symplectic Field Theory VIII: Symplectic Homology
辛场论八:辛同调
  • 批准号:
    1636665
  • 财政年份:
    2016
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Standard Grant
Foundations of Symplectic Field Theory
辛场论基础
  • 批准号:
    157897074
  • 财政年份:
    2009
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Research Grants
CAREER: The symplectic category, Floer field theory, and relations to gauge theory and topology
职业:辛范畴、弗洛尔场论以及与规范理论和拓扑的关系
  • 批准号:
    0844188
  • 财政年份:
    2009
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Standard Grant
An International Conference on: New Challenges and Perspectives in Symplectic Field Theory
国际会议:辛场论的新挑战和前景
  • 批准号:
    0649446
  • 财政年份:
    2007
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Standard Grant
Symplectic Field Theory, its interactions and applications
辛场论、其相互作用和应用
  • 批准号:
    0707103
  • 财政年份:
    2007
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Continuing Grant
Workshop: "Algebraic structures in Symplectic Field Theory and Applications"
研讨会:“辛场论中的代数结构及其应用”
  • 批准号:
    0616617
  • 财政年份:
    2006
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Standard Grant
Workshop on Symplectic Field Theory; May 14-20, 2005; Leipzig, Germany
辛场论研讨会;
  • 批准号:
    0505968
  • 财政年份:
    2005
  • 资助金额:
    $ 40.06万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了