Acoustic Resonances in Solids: Pressure-, Spatial- and Photo-tuning

固体中的声共振:压力、空间和光调谐

基本信息

项目摘要

The condensed matter physics project will develop a new laser light scattering technique to measure the elastic constants of materials up to mega-bar pressures achievable in a diamond anvil cell. The research is based on the detection of standing wave resonances that develop because of surface corrugation effects. The technique is particularly useful for studies of opaque materials and will be applied to key materials important in geophysics. Experiments are proposed that should provide insights into the physics of poorly understood deformation mechanisms and elastic properties associated with buried interfaces and embedded laminar structures. The frequency profile and spatial confinement of acoustic waves confined in these systems will yield new opportunities for acoustic wave device applications. In addition, the unusual mechanical properties of a new, photo-modified, state of glass that is stabilized at optimum connectivity in binary chalcogenide glasses will be investigated. Also of interest is the important interplay between mechanical stability and pronounced glass forming tendencies related to local connectivity between atoms. The project will train graduate and undergraduate students in challenging issues in contemporary solid state physics. They will gain valuable experience with modern laser spectroscopy techniques. This education will prepare them for productive careers in academia or industry.The project will support a laser spectroscopy study of the acoustic and mechanical properties of solids. The research involves the behavior of materials under extreme compression - approaching pressures at the Earth's interior. It will develop a new method to probe high-pressure behavior of materials and will yield critical parameters for theories of material structural properties. The study dealing with high frequency acoustic waves confined to buried layers should provide important information into the physics of localized excitations. The frequency profile and spatial confinement of the waves will yield new technological opportunities that will not suffer from bandwidth limitations of conventional surface wave devices. The proposed study of glasses addresses key aspects of their elastic and optical properties through creation of a new, photo-modified, state. Of interest is how the properties of this state relate to the formation of glasses and how glass properties depend on the specific local connectivity of atoms. Together with the freedom and flexibility associated with the non-crystalline nature of glasses, the unusual light-induced effects may yield results of technological value in these useful materials. This research will be conducted with the aid of graduate and undergraduate students. They will gain valuable experience through their involvement in contemporary forefront research in solid state physics and laser spectroscopy techniques. These experiences will be of great value in their further studies, or employment in industry, academia or government laboratories.
凝聚态物理学项目将开发一种新的激光散射技术,以测量在金刚石压砧中可达到的百万巴压力下材料的弹性常数。这项研究是基于检测驻波共振,发展,因为表面反射效应。 该技术对不透明材料的研究特别有用,并将应用于电子物理学中重要的关键材料。 实验提出,应提供深入了解的物理变形机制和弹性性能与埋界面和嵌入式层状结构。 这些系统中声波的频率分布和空间限制将为声波器件的应用带来新的机会。 此外,一个新的,光改性的,玻璃的状态,是稳定在二元硫系玻璃的最佳连接不寻常的机械性能将进行调查。 同样令人感兴趣的是机械稳定性和与原子之间的局部连接性相关的显著玻璃形成趋势之间的重要相互作用。 该项目将培养研究生和本科生在当代固体物理学的挑战性问题。 他们将获得现代激光光谱技术的宝贵经验。 该项目将支持固体声学和机械特性的激光光谱学研究。 这项研究涉及材料在极端压缩下的行为-接近地球内部的压力。 它将为探索材料的高压行为提供一种新的方法,并为材料结构性能理论提供关键参数。 研究局限于埋层中的高频声波应该为局部激发的物理学提供重要的信息。 波的频率分布和空间限制将产生新的技术机会,不会受到传统表面波设备的带宽限制。 对玻璃的拟议研究通过创造一种新的光改性状态来解决其弹性和光学性质的关键方面。 有趣的是,这种状态的性质如何与玻璃的形成有关,以及玻璃的性质如何取决于原子的特定局部连接性。 加上玻璃的非晶体性质所带来的自由度和灵活性,这种不寻常的光诱导效应可能会在这些有用的材料中产生具有技术价值的结果。 这项研究将在研究生和本科生的帮助下进行。 他们将通过参与固态物理和激光光谱技术的当代前沿研究获得宝贵的经验。这些经验将对他们的进一步研究,或在工业,学术界或政府实验室就业具有重要价值。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ratnasingham Sooryakumar其他文献

Characterizing field-dependent strength and orientation of superparamagnetic bead magnetization via DNA origami microlevers
  • DOI:
    10.1016/j.bpj.2022.11.2919
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Linnea K. Larson;Khadija Hamisi;Abigail Gilreath;Avery Buchanan;Kayla Loescher;Dylan Roderick;Ratnasingham Sooryakumar;Stephanie Lauback
  • 通讯作者:
    Stephanie Lauback

Ratnasingham Sooryakumar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ratnasingham Sooryakumar', 18)}}的其他基金

Real time magnetic control of DNA origami devices and metamaterials
DNA折纸装置和超材料的实时磁控制
  • 批准号:
    1916740
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Hydrodynamics and Actuation of Magnetic Bacteria in Confined Geometries:Single cells to swarms
受限几何形状中磁性细菌的流体动力学和驱动:单细胞到群体
  • 批准号:
    1710598
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Investigation of Photo-Reversible Glass States: Science & Photonic Applications
光可逆玻璃态的研究:科学
  • 批准号:
    0701686
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Magnons, Domain Resonances and Elastic Waves in Giant Magneto-Resistive Materials
巨磁阻材料中的磁振子、磁畴共振和弹性波
  • 批准号:
    9701685
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Collective Modes in Quantum Wires and Strongly Correlated Tunable Ferromagnets
量子线和强相关可调谐铁磁体中的集体模式
  • 批准号:
    9303568
  • 财政年份:
    1993
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Light Scattering from Strongly Perturbed Semiconductors
强扰动半导体的光散射
  • 批准号:
    9001647
  • 财政年份:
    1990
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Inelastic Light Scattering Studies of Quantum-Layered Semiconductors and Metallic (Superconducting) Microstructures
量子层半导体和金属(超导)微结构的非弹性光散射研究
  • 批准号:
    8703980
  • 财政年份:
    1987
  • 资助金额:
    --
  • 项目类别:
    Continuing grant

相似海外基金

Studies on Hadron Resonances by uniformized Mittag-Leffler expansion
均匀 Mittag-Leffler 展开式的强子共振研究
  • 批准号:
    24K07062
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Televising Asexuality: Representations, Resonances, and Community Viewership.
电视无性恋:表现、共鸣和社区收视率。
  • 批准号:
    2875724
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Collective Dynamics and Resonances of Phonons and Dislocations in Thermal Transport
热传输中声子和位错的集体动力学和共振
  • 批准号:
    2121895
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Magnetic Resonances in Nonlinear Dielectric Nanostructures: New Light-Matter Interactions and Machine Learning Enhanced Design
非线性介电纳米结构中的磁共振:新的光-物质相互作用和机器学习增强设计
  • 批准号:
    2240562
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: First-Principle Control of Novel Resonances in Non-Hermitian Photonic Media
合作研究:非厄米光子介质中新型共振的第一性原理控制
  • 批准号:
    2326699
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Semiclassical distribution of quantum resonances and graph structure of classical trapped trajectories
量子共振的半经典分布和经典俘获轨迹的图结构
  • 批准号:
    22KJ2364
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: First-Principle Control of Novel Resonances in Non-Hermitian Photonic Media
合作研究:非厄米光子介质中新型共振的第一性原理控制
  • 批准号:
    2326698
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Nonlinear Resonances of Highly Damped, Soft Materials
职业:高阻尼软材料的非线性共振
  • 批准号:
    2145512
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Scattering resonances in the vanishing curvature limit
曲率消失极限中的散射共振
  • 批准号:
    2746963
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了