Workshop on Bifurcations and Instabilities in Geomechanics, June 2-5, 2002, St. John's University, Collegeville, Minnesota

地质力学分岔和不稳定性研讨会,2002 年 6 月 2-5 日,圣约翰大学,明尼苏达州科利奇维尔

基本信息

  • 批准号:
    0207406
  • 负责人:
  • 金额:
    $ 3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-01-15 至 2002-12-31
  • 项目状态:
    已结题

项目摘要

The objective of this workshop is to bring together international researchers and practitioners dealing with localization in geomechanics. The focus of the 2002 workshop will be to collect and debate the applications that have taken place since the first workshop in 1988. The scope of the workshop will include analytical solutions, numerical methods, experimental techniques, and case histories. Besides the presentation of fundamental research findings, applications in geotechnical, petroleum, mining, and bulk materials engineering will be emphasized.Failure of many geotechnical structures is characterized by the formation and propagation of zones of localized deformation. For example, a noticeable feature of slope and underground failures in soft rock and overconsolidated clay is the appearance of slip surfaces or shear bands, the characteristics of which are associated with deformation being concentrated in narrow zones and the surrounding material appearing intact. The appearance of localization or other bifurcation modes often manifests itself in specimen or system instability under specific loading conditions. The mathematical formulation of bifurcation phenomena and related instabilities constitutes the basis of a continuum theory of failure. This theory and its applications, as well as the methodology of analyzing instabilities in general, are crucial in adequate modeling and safe design of numerous geotechnical engineering problems.Five international workshops on bifurcation and localization in geomechanics have been held in Europe, Japan, and Australia: 1. Karlsruhe, Germany: 1988. 2. Gdansk, Poland: 1989. 3. Aussois, France: 1993. 4. Gifu, Japan: 1997. 5. Perth, Australia: 1999. The University of Minnesota was selected as the site for the 6th Workshop to be held on June 2-5, 2002.
本次研讨会的目的是汇集国际研究人员和从业人员在地质力学处理本地化。2002年讲习班的重点将是收集和讨论自1988年第一次讲习班以来的应用情况。研讨会的范围将包括分析解决方案,数值方法,实验技术和案例历史。除了介绍基础研究成果外,还将强调在岩土工程、石油、采矿和散装材料工程中的应用。许多岩土结构的破坏以局部变形区的形成和扩展为特征。例如,软岩和超固结粘土中边坡和地下破坏的一个显著特征是出现滑动面或剪切带,其特征与变形集中在狭窄区域和周围材料看起来完好无损有关。局部化或其他分叉模式的出现通常表现为在特定载荷条件下的试样或系统不稳定。分叉现象和相关不稳定性的数学公式构成了连续体失效理论的基础。这一理论及其应用,以及一般的不稳定性分析方法,在许多岩土工程问题的充分建模和安全设计中至关重要。卡尔斯鲁厄,德国:1988年。2.格但斯克,波兰:1989年。3. Aussois,法国:1993年。4.日本岐阜:1997年。5.珀斯,澳大利亚:1999年。 明尼苏达大学被选为2002年6月2日至5日举行的第六次讲习班的地点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph Labuz其他文献

Joseph Labuz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph Labuz', 18)}}的其他基金

Progressive Failure of Slopes and Excavations as Fracture Problems
斜坡和基坑的渐进破坏作为断裂问题
  • 批准号:
    0825454
  • 财政年份:
    2008
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Characteristic Length of Quasi-Brittle Materials
准脆性材料的特征长度
  • 批准号:
    0070062
  • 财政年份:
    2000
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
Behavior of Rock in Multi-Axial States of Stress
岩石在多轴应力状态下的行为
  • 批准号:
    9604684
  • 财政年份:
    1997
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Assessing the Onset of Failure Through Acoustic Emission
通过声发射评估故障的发生
  • 批准号:
    9532061
  • 财政年份:
    1996
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
RIA: Brittleness Effects on the Structural Response of Strain-Softening Materials
RIA:脆性对应变软化材料结构响应的影响
  • 批准号:
    9109416
  • 财政年份:
    1991
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Engineering Research Equipment Grant: Development of a Plane Strain Apparatus for Soft Rock and Concrete
工程研究设备资助:软岩和混凝土平面应变仪的开发
  • 批准号:
    8906185
  • 财政年份:
    1989
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant

相似海外基金

Toward an automated analysis of bifurcations of dynamical systems
动力系统分岔的自动分析
  • 批准号:
    23K17657
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Arctic sea ice and bifurcations in a hierarchy of simplemodels (tentative)
简单模型层次结构中的北极海冰和分叉(暂定)
  • 批准号:
    2277781
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
    Studentship
Bifurcations in Complex Algebraic Dynamics
复杂代数动力学中的分岔
  • 批准号:
    2246630
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Bifurcations of random dynamical systems with bounded noise
具有有限噪声的随机动力系统的分岔
  • 批准号:
    EP/W009455/1
  • 财政年份:
    2022
  • 资助金额:
    $ 3万
  • 项目类别:
    Research Grant
Towards universality of delayed and quickened bifurcations in biological signalling
迈向生物信号传导中延迟和加速分歧的普遍性
  • 批准号:
    EP/W032317/1
  • 财政年份:
    2022
  • 资助金额:
    $ 3万
  • 项目类别:
    Research Grant
Bifurcations: functional differential equations and waves in inhomogeneous media
分岔:非均匀介质中的泛函微分方程和波
  • 批准号:
    RGPIN-2016-04318
  • 财政年份:
    2021
  • 资助金额:
    $ 3万
  • 项目类别:
    Discovery Grants Program - Individual
Patterns and Bifurcations in Multiple Timescale Dynamical Systems
多时间尺度动力系统中的模式和分岔
  • 批准号:
    2204758
  • 财政年份:
    2021
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
Stability and Bifurcations in Free-Boundary Models of Active Gels
活性凝胶自由边界模型的稳定性和分岔
  • 批准号:
    2005262
  • 财政年份:
    2020
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Engineering Bifurcations in High-Dimensional Dynamical Systems Using Isostable Reduction Methods
使用等稳定约简方法在高维动力系统中设计分岔
  • 批准号:
    1933583
  • 财政年份:
    2020
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Bifurcations: functional differential equations and waves in inhomogeneous media
分岔:非均匀介质中的泛函微分方程和波
  • 批准号:
    RGPIN-2016-04318
  • 财政年份:
    2019
  • 资助金额:
    $ 3万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了