Bifurcations in Complex Algebraic Dynamics
复杂代数动力学中的分岔
基本信息
- 批准号:2246630
- 负责人:
- 金额:$ 44.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The stability of a dynamical system is arguably its most important feature, from a theoretical, computational, or practical point of view. For systems that evolve with time, one aims to determine which perturbations will preserve the system’s long-term behavior and which perturbations will lead to radically different outcomes. This project concerns stability and bifurcations in the setting of complex algebraic dynamical systems. Such systems are defined by polynomial formulas in one or several variables. The algebraic nature of the defining equations connect the dynamical study with the rich theory of algebraic geometry. Moreover, in the case of examples where all of the defining polynomials have, for example, integer coefficients, the relevant dynamical stability questions have surprising connections to number theory and to the Diophantine geometry of the underlying equations. The project will extend the theory of dynamical stability for complex analytic examples to new settings that arise naturally in arithmetic geometry and complex dynamics. The project also provides research and training opportunities for graduate students and postdocs.This project develops the theory of stability for analytic families of maps on projective spaces, in both a complex analytic setting and in the setting of non-archimedean-valued fields and p-adic analysis. It was recently discovered, in earlier work of the PI and of other researchers, that certain questions about height functions and arithmetic intersection theory can be analyzed using complex dynamics. In a series of recent breakthroughs in arithmetic geometry, especially concerning uniform bounds for numbers of rational points on families of algebraic varieties, stability theory played a crucial--if somewhat hidden--role. This project aims to shed new light on the role of stability theory and to push the theory further. Many of the proposed problems and applications of the theory are related to the occurrence of `unlikely intersections’ in families of abelian varieties or in more general families of polarized dynamical systems. Specific goals of this project include (1) to characterize positivity properties of certain bifurcation currents and measures; (2) to provide bounds on the geometry of invariant subvarieties for algebraic dynamical systems; and (3) to formulate a theory of bifurcations in the setting of p-adic analytic families of maps. The research activity conducted under this award is expected to impact multiple areas of mathematics, including number theory, geometry, and dynamics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从理论、计算或实践的角度来看,动力系统的稳定性可以说是其最重要的特征。对于随时间进化的系统,人们的目标是确定哪些扰动将保持系统的长期行为,哪些扰动将导致完全不同的结果。本课题研究复杂代数动力系统的稳定性和分岔问题。这样的系统是由一个或几个变量的多项式公式定义的。定义方程的代数性质将动力学研究与代数几何的丰富理论联系起来。此外,在所有定义多项式都有整数系数的例子中,相关的动态稳定性问题与数论和底层方程的丢芬图几何有着惊人的联系。该项目将把复杂分析实例的动态稳定性理论扩展到算术几何和复杂动力学中自然出现的新设置。该项目还为研究生和博士后提供研究和培训机会。本课题在复解析环境和非阿基米德值域和p进分析环境下,发展了射影空间上映射解析族的稳定性理论。最近,在PI和其他研究人员的早期工作中发现,关于高度函数和算术相交理论的某些问题可以用复杂动力学来分析。在最近算术几何的一系列突破中,特别是关于代数变族上有理点数的一致界,稳定性理论发挥了至关重要的作用——如果有些隐藏的话。本项目旨在阐明稳定性理论的作用,并进一步推动稳定性理论的发展。该理论的许多问题和应用都与阿贝尔变体族或更一般的极化动力系统族中“不可能相交”的发生有关。该项目的具体目标包括:(1)描述某些分岔电流和措施的正性特性;(2)给出代数动力系统不变子变量的几何界;(3)在p进映射解析族的情况下,给出了一个分支理论。根据该奖项进行的研究活动预计将影响数学的多个领域,包括数论、几何和动力学。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laura DeMarco其他文献
Uniform Manin-Mumford for a family of genus 2 curves
- DOI:
https://doi.org/10.4007/annals.2020.191.3.5 - 发表时间:
2020 - 期刊:
- 影响因子:
- 作者:
Laura DeMarco;Holly Krieger;Hexi Ye - 通讯作者:
Hexi Ye
Bounded height in families of dynamical systems
动力系统族中的有界高度
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Laura DeMarco;Dragos Ghioca;Holly Krieger;Khoa Nguyen;Tom Tucker;Hexi Ye - 通讯作者:
Hexi Ye
Uniform Manin-Mumford for a family of genus 2 curves
属 2 曲线族的均匀 Manin-Mumford
- DOI:
10.4007/annals.2020.191.3.5 - 发表时间:
2019-01 - 期刊:
- 影响因子:0
- 作者:
Laura DeMarco;Holly Krieger;Hexi Ye - 通讯作者:
Hexi Ye
Laura DeMarco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laura DeMarco', 18)}}的其他基金
Unlikely Intersections in Diophantine Geometry and Dynamics
丢番图几何与动力学中不太可能的交叉点
- 批准号:
2200981 - 财政年份:2022
- 资助金额:
$ 44.69万 - 项目类别:
Standard Grant
Complex Dynamics and Diophantine Geometry
复杂动力学和丢番图几何
- 批准号:
2050037 - 财政年份:2020
- 资助金额:
$ 44.69万 - 项目类别:
Standard Grant
Complex Dynamics and Diophantine Geometry
复杂动力学和丢番图几何
- 批准号:
1856103 - 财政年份:2019
- 资助金额:
$ 44.69万 - 项目类别:
Standard Grant
Midwest Dynamical Systems Conferences 2019-2020
2019-2020 年中西部动力系统会议
- 批准号:
1856176 - 财政年份:2019
- 资助金额:
$ 44.69万 - 项目类别:
Standard Grant
Complex Algebraic Dynamics and Geometry
复杂代数动力学和几何
- 批准号:
1600718 - 财政年份:2016
- 资助金额:
$ 44.69万 - 项目类别:
Continuing Grant
Midwest Dynamical Systems Conferences; Indianapolis, IN - October 21-23, 2016 ; (2nd Conference in 2017)
中西部动力系统会议;
- 批准号:
1600654 - 财政年份:2016
- 资助金额:
$ 44.69万 - 项目类别:
Continuing Grant
Moduli spaces of complex dynamical systems
复杂动力系统的模空间
- 批准号:
1517080 - 财政年份:2014
- 资助金额:
$ 44.69万 - 项目类别:
Continuing Grant
Moduli spaces of complex dynamical systems
复杂动力系统的模空间
- 批准号:
1302929 - 财政年份:2013
- 资助金额:
$ 44.69万 - 项目类别:
Continuing Grant
CAREER: Algebraic structures in complex dynamics
职业:复杂动力学中的代数结构
- 批准号:
0747936 - 财政年份:2008
- 资助金额:
$ 44.69万 - 项目类别:
Continuing Grant
Holomorphic families of complex dynamical systems
复杂动力系统的全纯族
- 批准号:
0813675 - 财政年份:2007
- 资助金额:
$ 44.69万 - 项目类别:
Standard Grant
相似国自然基金
TPLATE Complex通过胞吞调控CLV3-CLAVATA多肽信号模块维持干细胞稳态的分子机制研究
- 批准号:32370337
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
二甲双胍对于模型蛋白、γ-secretase、Complex I自由能曲面的影响
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高脂饮食损伤巨噬细胞ndufs4表达激活Complex I/mROS/HIF-1通路参与溃疡性结肠炎研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
线粒体参与呼吸中枢pre-Bötzinger complex呼吸可塑性调控的机制研究
- 批准号:31971055
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
北温带中华蹄盖蕨复合体Athyrium sinense complex的物种分化
- 批准号:31872651
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
边缘鳞盖蕨复合体种 (Microlepia marginata complex) 的网状进化及物种形成研究
- 批准号:31860044
- 批准年份:2018
- 资助金额:37.0 万元
- 项目类别:地区科学基金项目
益气通络颗粒及主要单体通过调节cAMP/PKA/Complex I通路治疗气虚血瘀证脑梗死的机制研究
- 批准号:81703747
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
生物钟转录抑制复合体 Evening Complex 调控茉莉酸诱导叶片衰老的分子机制研究
- 批准号:31670290
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
延伸子复合物(Elongator complex)的翻译调控作用
- 批准号:31360023
- 批准年份:2013
- 资助金额:51.0 万元
- 项目类别:地区科学基金项目
Complex I 基因变异与寿命的关联及其作用机制的研究
- 批准号:81370445
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
Algebraic analysis of deformations of non-isolated singularities, computational complex analysis and algorithms
非孤立奇点变形的代数分析、计算复杂性分析和算法
- 批准号:
22K03334 - 财政年份:2022
- 资助金额:
$ 44.69万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study of complex spherical codes and designs by algebraic methods
用代数方法研究复杂的球形代码和设计
- 批准号:
22K03410 - 财政年份:2022
- 资助金额:
$ 44.69万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Complex Analysis in Algebraic Geometry for Symbolic Computation
符号计算的代数几何中的复分析
- 批准号:
574677-2022 - 财政年份:2022
- 资助金额:
$ 44.69万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: Integrating Algebraic Topology, Graph Theory, and Multiscale Analysis for Learning Complex and Diverse Datasets
协作研究:集成代数拓扑、图论和多尺度分析来学习复杂多样的数据集
- 批准号:
2053284 - 财政年份:2021
- 资助金额:
$ 44.69万 - 项目类别:
Continuing Grant
Collaborative Research: Integrating Algebraic Topology, Graph Theory, and Multiscale Analysis for Learning Complex and Diverse Datasets
协作研究:集成代数拓扑、图论和多尺度分析来学习复杂多样的数据集
- 批准号:
2052983 - 财政年份:2021
- 资助金额:
$ 44.69万 - 项目类别:
Continuing Grant
Development of efficient algorithms for complex and real algebraic constraints
开发复杂和实代数约束的有效算法
- 批准号:
18K03426 - 财政年份:2018
- 资助金额:
$ 44.69万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic aanalysis of non-isolated singularities and computational complex analysis algorithms
非孤立奇点的代数分析和计算复杂分析算法
- 批准号:
18K03320 - 财政年份:2018
- 资助金额:
$ 44.69万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Moduli spaces of certain real and complex algebraic varietes
某些实数和复数代数变体的模空间
- 批准号:
512292-2017 - 财政年份:2017
- 资助金额:
$ 44.69万 - 项目类别:
University Undergraduate Student Research Awards
Analytic Methods in Complex Algebraic Geometry
复杂代数几何中的解析方法
- 批准号:
1707661 - 财政年份:2017
- 资助金额:
$ 44.69万 - 项目类别:
Standard Grant
Complex Algebraic Dynamics and Geometry
复杂代数动力学和几何
- 批准号:
1600718 - 财政年份:2016
- 资助金额:
$ 44.69万 - 项目类别:
Continuing Grant














{{item.name}}会员




