Stability and Bifurcations in Free-Boundary Models of Active Gels

活性凝胶自由边界模型的稳定性和分岔

基本信息

  • 批准号:
    2005262
  • 负责人:
  • 金额:
    $ 28.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

This project is motivated by studies of active matter (also known as active materials). Such materials are typically of biological origin, such as bacterial suspensions and cytoskeletons of living cells, but they also include synthetic systems such as artificial self-propelled particles. These materials exhibit striking novel properties, and their theoretical understanding requires development of new mathematical tools. A signature of many active materials is motility, which is the ability to move spontaneously via the consumption of energy from internal sources or from the environment. This project concerns the development and analysis of mathematical models of a special class of active material: motile active gels in a non-equilibrium state (for example, the cytoskeleton of a living cell). The project focuses on free-boundary models, in which unknown functions solve equations in a domain that, due to the phenomenon of motility, is also unknown. The methodology under development will be applicable in applied mathematics and will be relevant to materials and life sciences as well as engineering. The graduate students participating in this project will receive highly multidisciplinary training, enabling them to work at the interface of mathematics, life, and physical sciences. The principal investigator will also teach and mentor undergraduate students with an emphasis on applications of mathematics to other disciplines. Free boundary problems such as the Stefan, Hele-Shaw, and Muscat problems have received significant attention since they are challenging from a mathematical point of view and important for applications. The focus of this project is on rigorous analysis of recently developed free-boundary partial differential equation (PDE) models of active gels (gels in a non-equilibrium state). These models are governed by nonlinear PDEs, unlike classical free boundary problems and most recent tumor growth models. The principal investigator will perform rigorous analysis of the existence and stability of stationary state, traveling wave, and rotating solutions by developing novel analytical tools for bifurcation analysis in the free boundary setting. The stability of these solutions is crucial for biophysical applications since it allows one to distinguish stable states from unstable ones that are rarely observed in experiments. The project will demonstrate that linearized stability analysis of these solutions is typically inconclusive, and new techniques for genuine nonlinear stability analysis will be developed based on construction of novel energy (Lyapunov type) functionals for free boundary problems with nonlinear PDEs. Analytical and numerical results will be compared to experimental observations of single cells and cell aggregates. A long-term goal is to provide theoretical understanding of migration of cells that drives important biological processes, for example, wound healing and the invasion of cancerous tissues.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的动机是研究活性物质(也称为活性材料)。这些材料通常是生物来源的,如细菌悬浮液和活细胞的细胞骨架,但它们也包括合成系统,如人工自推进颗粒。这些材料表现出惊人的新特性,它们的理论理解需要开发新的数学工具。 许多活性材料的特征是运动性,这是通过消耗来自内部来源或环境的能量而自发移动的能力。 该项目涉及开发和分析一类特殊活性材料的数学模型:非平衡状态下的能动活性凝胶(例如活细胞的细胞骨架)。该项目的重点是自由边界模型,其中未知函数求解域中的方程,由于运动现象,也是未知的。正在开发的方法将适用于应用数学,并将与材料和生命科学以及工程有关。参加该项目的研究生将接受高度多学科的培训,使他们能够在数学,生命和物理科学的接口工作。首席研究员还将教授和指导本科生,重点是数学在其他学科的应用。自由边界问题,如Stefan,Hele-Shaw和麝香问题,受到了极大的关注,因为它们是具有挑战性的从数学的角度来看,重要的应用。该项目的重点是严格分析最近开发的自由边界偏微分方程(PDE)模型的活性凝胶(凝胶在非平衡状态)。这些模型是由非线性偏微分方程,不像经典的自由边界问题和最近的肿瘤生长模型。 首席研究员将通过开发用于自由边界设置中的分叉分析的新型分析工具,对稳态、行波和旋转解的存在性和稳定性进行严格分析。这些解决方案的稳定性是至关重要的生物物理应用,因为它允许一个区分稳定的状态,从不稳定的,很少在实验中观察到的。该项目将证明,这些解决方案的线性化稳定性分析通常是不确定的,真正的非线性稳定性分析的新技术将开发基于新的能量(李雅普诺夫型)泛函与非线性偏微分方程的自由边界问题的建设。 分析和数值计算的结果将进行比较,单细胞和细胞聚集体的实验观察。长期目标是提供对细胞迁移的理论理解,这些迁移驱动重要的生物过程,例如伤口愈合和癌组织的侵袭。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Asymptotic stability of contraction-driven cell motion
收缩驱动的细胞运动的渐近稳定性
  • DOI:
    10.1103/physreve.105.024403
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Safsten, C. Alex;Rybalko, Volodmyr;Berlyand, Leonid
  • 通讯作者:
    Berlyand, Leonid
Dynamics and steady state of squirmer motion in liquid crystal
  • DOI:
    10.1017/s0956792523000177
  • 发表时间:
    2023-07-10
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Berlyand, Leonid;Chi, Hai;Yip, Nung Kwan
  • 通讯作者:
    Yip, Nung Kwan
A novel multi-scale loss function for classification problems in machine learning
  • DOI:
    10.1016/j.jcp.2023.112679
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Berlyand;Robert Creese;P. Jabin
  • 通讯作者:
    L. Berlyand;Robert Creese;P. Jabin
Stability for the training of deep neural networks and other classifiers
深度神经网络和其他分类器训练的稳定性
Bifurcation of finger-like structures in traveling waves of epithelial tissues spreading
  • DOI:
    10.1016/j.jmaa.2024.128338
  • 发表时间:
    2023-11
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    L. Berlyand;Antonina Rybalko;V. Rybalko;C. A. Safsten
  • 通讯作者:
    L. Berlyand;Antonina Rybalko;V. Rybalko;C. A. Safsten
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leonid Berlyand其他文献

Focusing of active particles in a converging flow
汇聚流中活性粒子的聚焦
  • DOI:
    10.1088/1367-2630/aa94fd
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Mykhailo Potomkin;Andreas Kaiser;Leonid Berlyand;Igor S. Aranson
  • 通讯作者:
    Igor S. Aranson
On an evolution equation in a cell motility model
  • DOI:
    10.1016/j.physd.2015.10.008
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
  • 作者:
    Matthew S. Mizuhara;Leonid Berlyand;Volodymyr Rybalko;Lei Zhang
  • 通讯作者:
    Lei Zhang
A two scale $$\Gamma $$ -convergence approach for random non-convex homogenization
随机非凸均匀化的双尺度 Γ 收敛方法
Non-Gaussian Limiting Behavior of the Percolation Threshold in a Large System

Leonid Berlyand的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leonid Berlyand', 18)}}的其他基金

EAGER: IMPRESS-U: Random Matrix Theory and its Applications to Deep Learning
EAGER:IMPRESS-U:随机矩阵理论及其在深度学习中的应用
  • 批准号:
    2401227
  • 财政年份:
    2024
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Control of Flagellated Bacteria Motion in Anisotropic Fluids
各向异性流体中带鞭毛细菌运动的控制
  • 批准号:
    1707900
  • 财政年份:
    2017
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
DMREF: Collaborative Research: Design of active ink for 3D printing: integrating modeling and experiments
DMREF:协作研究:3D 打印活性墨水设计:建模与实验相结合
  • 批准号:
    1628411
  • 财政年份:
    2016
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Workshop on Interdisciplinary Mathematics
跨学科数学研讨会
  • 批准号:
    1522040
  • 财政年份:
    2015
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Ginzburg-Landau type problems in superconductivity and cell motility
超导和细胞运动中的金兹堡-朗道型问题
  • 批准号:
    1405769
  • 财政年份:
    2014
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
PDEs and Dynamical Systems in Biology
生物学中的偏微分方程和动力系统
  • 批准号:
    1311726
  • 财政年份:
    2013
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Two-Parameter Homogenization Problems in Superconductivity and Related Problems
超导中的二参数均匀化问题及相关问题
  • 批准号:
    1106666
  • 财政年份:
    2011
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Homogenization of Ginzburg-Landau and Elasticity Problems and Related Questions
Ginzburg-Landau 的均质化和弹性问题及相关问题
  • 批准号:
    0708324
  • 财政年份:
    2007
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Modeling of Multiscale Inhomogeneous Materials with Periodic and Random Microstructure
具有周期性和随机微观结构的多尺度非均匀材料建模
  • 批准号:
    0204637
  • 财政年份:
    2002
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Conference: Homogenization and Materials Science
会议:均质化与材料科学
  • 批准号:
    0072259
  • 财政年份:
    2000
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant

相似海外基金

Toward an automated analysis of bifurcations of dynamical systems
动力系统分岔的自动分析
  • 批准号:
    23K17657
  • 财政年份:
    2023
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Bifurcations in Complex Algebraic Dynamics
复杂代数动力学中的分岔
  • 批准号:
    2246630
  • 财政年份:
    2023
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Arctic sea ice and bifurcations in a hierarchy of simplemodels (tentative)
简单模型层次结构中的北极海冰和分叉(暂定)
  • 批准号:
    2277781
  • 财政年份:
    2023
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Studentship
Bifurcations of random dynamical systems with bounded noise
具有有限噪声的随机动力系统的分岔
  • 批准号:
    EP/W009455/1
  • 财政年份:
    2022
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Research Grant
Towards universality of delayed and quickened bifurcations in biological signalling
迈向生物信号传导中延迟和加速分歧的普遍性
  • 批准号:
    EP/W032317/1
  • 财政年份:
    2022
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Research Grant
Bifurcations: functional differential equations and waves in inhomogeneous media
分岔:非均匀介质中的泛函微分方程和波
  • 批准号:
    RGPIN-2016-04318
  • 财政年份:
    2021
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Discovery Grants Program - Individual
Patterns and Bifurcations in Multiple Timescale Dynamical Systems
多时间尺度动力系统中的模式和分岔
  • 批准号:
    2204758
  • 财政年份:
    2021
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Engineering Bifurcations in High-Dimensional Dynamical Systems Using Isostable Reduction Methods
使用等稳定约简方法在高维动力系统中设计分岔
  • 批准号:
    1933583
  • 财政年份:
    2020
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Bifurcations: functional differential equations and waves in inhomogeneous media
分岔:非均匀介质中的泛函微分方程和波
  • 批准号:
    RGPIN-2016-04318
  • 财政年份:
    2019
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Discovery Grants Program - Individual
Patterns and Bifurcations in Multiple Timescale Dynamical Systems
多时间尺度动力系统中的模式和分岔
  • 批准号:
    2016216
  • 财政年份:
    2019
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了