Bifurcations of random dynamical systems with bounded noise
具有有限噪声的随机动力系统的分岔
基本信息
- 批准号:EP/W009455/1
- 负责人:
- 金额:$ 10.28万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The development of dynamical systems theory has been one of the scientific revolutions of the 20th century, and many insights from this field are now at the heart of deep and abstract mathematics as well as computational methodologies in many branches of science and engineering. During the last decades, the importance of considering the presence of noise and uncertainty has become evident in real-world applications, including the life sciences and artificial intelligence, but a corresponding random dynamical systems theory is still only in its very early stages of development.Bifurcation theory addresses the fundamental question of how the dynamics of a system changes under variation of parameters. While bifurcation theory is a cornerstone of the deterministic theory of dynamical systems, a corresponding theory in the presence of noise is still in its infancy, despite its relevance to many topical applications. This is due to the fact that the deterministic theory does not generalise in any obvious way to the random setting.The compound behaviour of a random dynamical system with bounded noise - describing the collection of trajectories with all possible noise realisations - admits a description at the topological level as a deterministic set-valued dynamical system. Attractors of this set-valued system correspond to attractors of the associated random system. However, set-valued dynamical systems are notoriously difficult to analyse, since they are defined on the set of all compact subsets, which is not a Banach space. This prevents the use of the implicit function theorem and other powerful tools fundamental for bifurcation theory (and, in general, qualitative dynamical systems theory) and is a well-known obstacle for theoretical and numerical methods alike. As a consequence, the tracking and bifurcation analysis of attractors of set-valued dynamical systems is a notoriously hard problem.We propose to use a novel insight to resolve the challenge of bifurcation analysis in set-valued dynamics, namely that boundaries of attractors of a dynamical system with bounded noise (and its associated set-valued dynamical system) admit a representation in terms of projected invariant manifolds of a related finite-dimensional dynamical system, defined on the unit tangent bundle over the state space. This boundary map opens up the possibility of studying bifurcations of attractors of systems with bounded noise, thus enabling the use of existing techniques of local and global bifurcation theory in the latter setting.
动力系统理论的发展已经成为20世纪世纪的科学革命之一,并且来自该领域的许多见解现在处于科学和工程的许多分支中的深刻和抽象数学以及计算方法的核心。在过去的几十年中,考虑噪声和不确定性的重要性在现实世界的应用中已经变得明显,包括生命科学和人工智能,但相应的随机动力系统理论仍然处于发展的早期阶段。分岔理论解决了系统的动力学在参数变化下如何变化的基本问题。虽然分叉理论是动力系统的确定性理论的基石,但存在噪声的相应理论仍处于起步阶段,尽管其与许多热门应用相关。这是因为确定性理论并没有以任何明显的方式概括到随机环境。具有有界噪声的随机动力系统的复合行为-描述具有所有可能的噪声实现的轨迹集合-承认在拓扑水平上的描述作为确定性集值动力系统。这个集值系统的吸引子对应于相关联的随机系统的吸引子。然而,集值动力系统是出了名的难以分析,因为它们被定义在所有紧子集的集合上,而不是Banach空间。这就阻碍了隐函数定理和其他强大的分支理论(以及一般的定性动力系统理论)的基本工具的使用,并且是理论和数值方法的一个众所周知的障碍。因此,集值动力系统吸引子的跟踪和分支分析是一个非常困难的问题,我们提出了一个新的见解来解决集值动力系统分支分析的挑战,即有界噪声动力系统吸引子的边界(及其相关的集值动力系统)允许相关的有限维动力系统的投影不变流形的表示,定义在状态空间上的单位切丛上。这个边界映射开辟了研究有界噪声系统的吸引子的分叉的可能性,从而使使用现有的技术的局部和全局分叉理论在后者的设置。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Attractors of Linear Maps with Bounded Noise
具有有限噪声的线性映射的吸引子
- DOI:10.48550/arxiv.2310.03437
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Lamb J
- 通讯作者:Lamb J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeroen Lamb其他文献
Jeroen Lamb的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeroen Lamb', 18)}}的其他基金
Imperial College London Mathematics Platform Grant
伦敦帝国理工学院数学平台资助
- 批准号:
EP/I019111/1 - 财政年份:2011
- 资助金额:
$ 10.28万 - 项目类别:
Research Grant
WORKSHOP: Resonance oscillations and stability of nonsmooth systems
研讨会:非光滑系统的共振和稳定性
- 批准号:
EP/H000577/1 - 财政年份:2009
- 资助金额:
$ 10.28万 - 项目类别:
Research Grant
WORKSHOP: Computational and Combinatorial aspects of Tilings
研讨会:瓷砖的计算和组合方面
- 批准号:
EP/G00871X/1 - 财政年份:2008
- 资助金额:
$ 10.28万 - 项目类别:
Research Grant
相似国自然基金
大Peclect数多粒径分布球形多孔介质内流动、传质和反应特性的研究
- 批准号:21276256
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
基于Riemann-Hilbert方法的相关问题研究
- 批准号:11026205
- 批准年份:2010
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
不经意传输协议中的若干问题研究
- 批准号:60873041
- 批准年份:2008
- 资助金额:30.0 万元
- 项目类别:面上项目
面向Web信息检索的随机P2P拓扑模型及语义网重构技术研究
- 批准号:60573142
- 批准年份:2005
- 资助金额:20.0 万元
- 项目类别:面上项目
利用逆转录病毒siRNA随机文库在Hela细胞中批量获得TRAIL凋亡通路相关功能基因的研究
- 批准号:30400080
- 批准年份:2004
- 资助金额:8.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Non-Stationary Random Dynamical Systems and Applications
非平稳随机动力系统和应用
- 批准号:
2247966 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
Standard Grant
Project 1: Deciphering the Dynamic Evolution of the Tumor-Neural Interface
项目1:破译肿瘤-神经界面的动态演化
- 批准号:
10729275 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
Validated numerics for Iterated Function Schemes, Dynamical Systems and Random Walks
迭代函数方案、动力系统和随机游走的经过验证的数值
- 批准号:
EP/W033917/1 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
Research Grant
What predictions can I trust? Stability of chaotic random dynamical systems
我可以相信哪些预测?
- 批准号:
DP220102216 - 财政年份:2022
- 资助金额:
$ 10.28万 - 项目类别:
Discovery Projects
Exit Time from the perspective of random dynamical systems and its application in stochastic resonance
随机动力系统视角下的退出时间及其在随机共振中的应用
- 批准号:
2752048 - 财政年份:2022
- 资助金额:
$ 10.28万 - 项目类别:
Studentship
Long time and transient behaviors of dynamical systems under deterministic and random perturbations
确定性和随机扰动下动力系统的长时间和瞬态行为
- 批准号:
RGPIN-2020-04451 - 财政年份:2022
- 资助金额:
$ 10.28万 - 项目类别:
Discovery Grants Program - Individual
N-point motions in Random Dynamical Systems
随机动力系统中的 N 点运动
- 批准号:
2602126 - 财政年份:2021
- 资助金额:
$ 10.28万 - 项目类别:
Studentship
Stochastic analysis of intermittent maps and random dynamical systems via operator renewal theory
通过算子更新理论对间歇映射和随机动力系统进行随机分析
- 批准号:
21J00015 - 财政年份:2021
- 资助金额:
$ 10.28万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Long time and transient behaviors of dynamical systems under deterministic and random perturbations
确定性和随机扰动下动力系统的长时间和瞬态行为
- 批准号:
RGPIN-2020-04451 - 财政年份:2021
- 资助金额:
$ 10.28万 - 项目类别:
Discovery Grants Program - Individual
Dynamical low-rank approximation for radiation transport with random input
具有随机输入的辐射传输的动态低秩近似
- 批准号:
491976834 - 财政年份:2021
- 资助金额:
$ 10.28万 - 项目类别:
WBP Fellowship