Bifurcations of random dynamical systems with bounded noise
具有有限噪声的随机动力系统的分岔
基本信息
- 批准号:EP/W009455/1
- 负责人:
- 金额:$ 10.28万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The development of dynamical systems theory has been one of the scientific revolutions of the 20th century, and many insights from this field are now at the heart of deep and abstract mathematics as well as computational methodologies in many branches of science and engineering. During the last decades, the importance of considering the presence of noise and uncertainty has become evident in real-world applications, including the life sciences and artificial intelligence, but a corresponding random dynamical systems theory is still only in its very early stages of development.Bifurcation theory addresses the fundamental question of how the dynamics of a system changes under variation of parameters. While bifurcation theory is a cornerstone of the deterministic theory of dynamical systems, a corresponding theory in the presence of noise is still in its infancy, despite its relevance to many topical applications. This is due to the fact that the deterministic theory does not generalise in any obvious way to the random setting.The compound behaviour of a random dynamical system with bounded noise - describing the collection of trajectories with all possible noise realisations - admits a description at the topological level as a deterministic set-valued dynamical system. Attractors of this set-valued system correspond to attractors of the associated random system. However, set-valued dynamical systems are notoriously difficult to analyse, since they are defined on the set of all compact subsets, which is not a Banach space. This prevents the use of the implicit function theorem and other powerful tools fundamental for bifurcation theory (and, in general, qualitative dynamical systems theory) and is a well-known obstacle for theoretical and numerical methods alike. As a consequence, the tracking and bifurcation analysis of attractors of set-valued dynamical systems is a notoriously hard problem.We propose to use a novel insight to resolve the challenge of bifurcation analysis in set-valued dynamics, namely that boundaries of attractors of a dynamical system with bounded noise (and its associated set-valued dynamical system) admit a representation in terms of projected invariant manifolds of a related finite-dimensional dynamical system, defined on the unit tangent bundle over the state space. This boundary map opens up the possibility of studying bifurcations of attractors of systems with bounded noise, thus enabling the use of existing techniques of local and global bifurcation theory in the latter setting.
动力系统理论的发展是20世纪的科学革命之一,该领域的许多见解现在是科学和工程许多分支的深奥和抽象数学以及计算方法的核心。在过去的几十年里,考虑噪声和不确定性的重要性已经在现实世界的应用中变得明显,包括生命科学和人工智能,但相应的随机动力系统理论仍然只是在其发展的早期阶段。分岔理论解决了系统动力学在参数变化下如何变化的基本问题。虽然分岔理论是动力系统确定性理论的基石,但在噪声存在下的相应理论仍处于起步阶段,尽管它与许多局部应用相关。这是由于确定性理论不能以任何明显的方式推广到随机设置的事实。具有有界噪声的随机动力系统的复合行为-描述具有所有可能噪声实现的轨迹集合-允许在拓扑水平上描述为确定性集值动力系统。该集值系统的吸引子对应于相关随机系统的吸引子。然而,集值动力系统是出了名的难以分析,因为它们是在所有紧子集的集合上定义的,而不是巴拿赫空间。这阻碍了隐函数定理和其他强大的分岔理论(一般来说,定性动力系统理论)基础工具的使用,并且是理论和数值方法的一个众所周知的障碍。因此,集值动力系统吸引子的跟踪和分岔分析是一个非常困难的问题。我们建议使用一种新的见解来解决集值动力学中分岔分析的挑战,即具有有界噪声的动力系统(及其相关的集值动力系统)的吸引子边界允许用相关有限维动力系统的投影不变流形表示,该流形定义在状态空间上的单位切线束上。该边界图开辟了研究有界噪声系统吸引子分岔的可能性,从而使局部和全局分岔理论的现有技术能够在后者的设置中使用。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Attractors of Linear Maps with Bounded Noise
具有有限噪声的线性映射的吸引子
- DOI:10.48550/arxiv.2310.03437
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Lamb J
- 通讯作者:Lamb J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeroen Lamb其他文献
Jeroen Lamb的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeroen Lamb', 18)}}的其他基金
Imperial College London Mathematics Platform Grant
伦敦帝国理工学院数学平台资助
- 批准号:
EP/I019111/1 - 财政年份:2011
- 资助金额:
$ 10.28万 - 项目类别:
Research Grant
WORKSHOP: Resonance oscillations and stability of nonsmooth systems
研讨会:非光滑系统的共振和稳定性
- 批准号:
EP/H000577/1 - 财政年份:2009
- 资助金额:
$ 10.28万 - 项目类别:
Research Grant
WORKSHOP: Computational and Combinatorial aspects of Tilings
研讨会:瓷砖的计算和组合方面
- 批准号:
EP/G00871X/1 - 财政年份:2008
- 资助金额:
$ 10.28万 - 项目类别:
Research Grant
相似国自然基金
大Peclect数多粒径分布球形多孔介质内流动、传质和反应特性的研究
- 批准号:21276256
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
基于Riemann-Hilbert方法的相关问题研究
- 批准号:11026205
- 批准年份:2010
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
不经意传输协议中的若干问题研究
- 批准号:60873041
- 批准年份:2008
- 资助金额:30.0 万元
- 项目类别:面上项目
面向Web信息检索的随机P2P拓扑模型及语义网重构技术研究
- 批准号:60573142
- 批准年份:2005
- 资助金额:20.0 万元
- 项目类别:面上项目
利用逆转录病毒siRNA随机文库在Hela细胞中批量获得TRAIL凋亡通路相关功能基因的研究
- 批准号:30400080
- 批准年份:2004
- 资助金额:8.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Non-Stationary Random Dynamical Systems and Applications
非平稳随机动力系统和应用
- 批准号:
2247966 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
Standard Grant
Project 1: Deciphering the Dynamic Evolution of the Tumor-Neural Interface
项目1:破译肿瘤-神经界面的动态演化
- 批准号:
10729275 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
Validated numerics for Iterated Function Schemes, Dynamical Systems and Random Walks
迭代函数方案、动力系统和随机游走的经过验证的数值
- 批准号:
EP/W033917/1 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
Research Grant
What predictions can I trust? Stability of chaotic random dynamical systems
我可以相信哪些预测?
- 批准号:
DP220102216 - 财政年份:2022
- 资助金额:
$ 10.28万 - 项目类别:
Discovery Projects
Exit Time from the perspective of random dynamical systems and its application in stochastic resonance
随机动力系统视角下的退出时间及其在随机共振中的应用
- 批准号:
2752048 - 财政年份:2022
- 资助金额:
$ 10.28万 - 项目类别:
Studentship
Long time and transient behaviors of dynamical systems under deterministic and random perturbations
确定性和随机扰动下动力系统的长时间和瞬态行为
- 批准号:
RGPIN-2020-04451 - 财政年份:2022
- 资助金额:
$ 10.28万 - 项目类别:
Discovery Grants Program - Individual
N-point motions in Random Dynamical Systems
随机动力系统中的 N 点运动
- 批准号:
2602126 - 财政年份:2021
- 资助金额:
$ 10.28万 - 项目类别:
Studentship
Stochastic analysis of intermittent maps and random dynamical systems via operator renewal theory
通过算子更新理论对间歇映射和随机动力系统进行随机分析
- 批准号:
21J00015 - 财政年份:2021
- 资助金额:
$ 10.28万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Long time and transient behaviors of dynamical systems under deterministic and random perturbations
确定性和随机扰动下动力系统的长时间和瞬态行为
- 批准号:
RGPIN-2020-04451 - 财政年份:2021
- 资助金额:
$ 10.28万 - 项目类别:
Discovery Grants Program - Individual
Dynamical low-rank approximation for radiation transport with random input
具有随机输入的辐射传输的动态低秩近似
- 批准号:
491976834 - 财政年份:2021
- 资助金额:
$ 10.28万 - 项目类别:
WBP Fellowship