ITR: Computational Learning and Discovery in Biological Sequence, Structure and Function Mapping
ITR:生物序列、结构和功能绘图中的计算学习和发现
基本信息
- 批准号:0225607
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-09-15 至 2007-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
EIA-0225656Reddy, RajCarnegie Mellon UniversityTitle: Computational Learning and Discovery in Biological Sequence, Structure and Function MappingComputer scientists, together with biological chemists will collaborate using statistical and computational tools and methods that the computer scientists have been developing for dealing with human language to better understand the function of proteins. Proteins are major players in the functioning of human and all other living cells. As in languages, where sequences of letters determine patterns of words and sentences, sequences of amino acids in proteins determine protein structure, dynamics and function. Such sequences and their constituents can be thought of as syllables or words that have particular properties. Given these sequences, scientists want to be able to predict their geometrical structure and dynamics, and hence their function. A deeper understanding of the relationship between these is required so that the information hidden in the DNA sequences of genes can be used to develop drugs to fight disease. In particular, there is great societal demand to understand and treat degenerative diseases, many of which are based on defective triggers for protein shape and interactions. Work toward these goals requires deep knowledge both in computer science and in biological chemistry, and must therefore be collaborative in nature. Carnegie Mellon computer scientists will therefore be partnering with colleagues with expertise in Biological Chemistry at the University of Pittsburgh, the Massachusetts Institute of Technology (MIT), Boston University and the National Research Council of Canada. Industry collaborators include Mathworks, Inc., and medical bioinformatics company, Medstory, Inc. Using tools like statistical language modeling, machine learning methods and high-level language processing for understanding how proteins work inside cells is a relatively new field called computational biolinguistics. At this point, the researchers have been able to detect protein fragment signatures from pathogens by application of statistical language modeling technologies to genome sequences, promising novel strategies in identifying and targeting such pathogens. .
EIA-0225656 Reddy,RajCarnegie Mellon大学标题:生物序列、结构和功能映射中的计算学习和发现计算机科学家将与生物化学家一起合作,使用计算机科学家一直在开发的用于处理人类语言的统计和计算工具和方法,以更好地理解蛋白质的功能。蛋白质是人类和所有其他活细胞功能的主要参与者。就像在语言中一样,字母序列决定单词和句子的模式,蛋白质中的氨基酸序列决定蛋白质的结构、动力学和功能。 这样的序列和它们的成分可以被认为是具有特定属性的音节或单词。有了这些序列,科学家们希望能够预测它们的几何结构和动力学,从而预测它们的功能。需要更深入地了解这些之间的关系,以便隐藏在基因DNA序列中的信息可以用于开发对抗疾病的药物。特别是,有很大的社会需求,以了解和治疗退行性疾病,其中许多是基于蛋白质形状和相互作用的缺陷触发。实现这些目标的工作需要在计算机科学和生物化学方面的深厚知识,因此必须在本质上是协作的。因此,卡内基梅隆大学的计算机科学家将与匹兹堡大学、马萨诸塞州理工学院(MIT)、波士顿大学和加拿大国家研究理事会的生物化学专业同事合作。行业合作者包括Mathworks,Inc.,和医学生物信息学公司Medstory,Inc.使用统计语言建模,机器学习方法和高级语言处理等工具来了解蛋白质在细胞内如何工作是一个相对较新的领域,称为计算生物语言学。 在这一点上,研究人员已经能够通过将统计语言建模技术应用于基因组序列来检测病原体的蛋白质片段特征,这有望成为识别和靶向此类病原体的新策略。.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Catherine Costello其他文献
Surveying the International Prevalence and Nature of Eating, Drinking and Swallowing Difficulties in Adults Presenting with Fibromyalgia.
调查患有纤维肌痛的成人饮食和吞咽困难的国际患病率和性质。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ó. Gilheaney;Catherine Costello;K. McTiernan - 通讯作者:
K. McTiernan
Midazolam versus hydroxyzine as intramuscular premedicant
- DOI:
10.1007/bf03009342 - 发表时间:
1983-03-01 - 期刊:
- 影响因子:3.300
- 作者:
Robert J. Fragen;Donald I. Funk;Michael J. Avram;Catherine Costello;Kimberly DeBruine - 通讯作者:
Kimberly DeBruine
Oxidation of Terminal Cysteines On HRas during Metabolic Stress Prevents Palmitoylation and Contributes To Endothelial Dysfunction
- DOI:
10.1016/j.freeradbiomed.2011.10.088 - 发表时间:
2011-11-01 - 期刊:
- 影响因子:
- 作者:
Joseph Robert Burgoyne;Dagmar Haeussler;Yuhuan Ji;Vikas Kumar;David Pimentel;Rebecca Zee;Catherine Costello;Cheng Lin;Mark McComb;Richard Cohen;Markus Bachschmid - 通讯作者:
Markus Bachschmid
Catherine Costello的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
ITR: Representation and Learning in Computational Game Theory
ITR:计算博弈论中的表示和学习
- 批准号:
0325363 - 财政年份:2003
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
ITR: Representation and Learning in Computational Game Theory
ITR:计算博弈论中的表示和学习
- 批准号:
0325377 - 财政年份:2003
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
ITR/AP: COLLABORATIVE RESEARCH: A Simulation Based Computational Approach using Machine Learning to Study Stochastic Business Games
ITR/AP:协作研究:使用机器学习研究随机商业博弈的基于模拟的计算方法
- 批准号:
0341702 - 财政年份:2003
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
ITR: Collaborative Research: Representation and Learning in Computational Game Theory
ITR:协作研究:计算博弈论中的表示和学习
- 批准号:
0325500 - 财政年份:2003
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
ITR: Collaborative Research: Representation and Learning in Computational Game theory
ITR:协作研究:计算博弈论中的表示和学习
- 批准号:
0325281 - 财政年份:2003
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
ITR: Collaborative Research - Computational Learning and Discovery in Biological Sequence, Structure and Function Mapping
ITR:协作研究 - 生物序列、结构和功能绘图中的计算学习和发现
- 批准号:
0225609 - 财政年份:2002
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
ITR: Collaborative Research: Computational Learning and Discovery in Biological Sequence, Structure and Function Mapping
ITR:协作研究:生物序列、结构和功能绘图中的计算学习和发现
- 批准号:
0225636 - 财政年份:2002
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
ITR/AP: COLLABORATIVE RESEARCH: A Simulation Based Computational Approach using Machine Learning to Study Stochastic Business Games
ITR/AP:协作研究:使用机器学习研究随机商业博弈的基于模拟的计算方法
- 批准号:
0113946 - 财政年份:2001
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
ITR/AP: COLLABORATIVE RESEARCH: A Simulation Based Computational Approach using Machine Learning to Study Stochastic Business Games
ITR/AP:协作研究:使用机器学习研究随机商业博弈的基于模拟的计算方法
- 批准号:
0114007 - 财政年份:2001
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
ITR: Learning-Centered Design Methodology: Meeting the Nation's Need for Computational Tools for K-12 Science Education (Engineering Scaffolded Work Environments)
ITR:以学习为中心的设计方法:满足国家对 K-12 科学教育计算工具的需求(工程支架工作环境)
- 批准号:
0085946 - 财政年份:2000
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant