Structure of Solutions of the Time Dependent Schroedinger Equation and of Certain Classes of Evolution Nonlinear PDEs
瞬态薛定谔方程和某些类演化非线性偏微分方程解的结构
基本信息
- 批准号:0600369
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Structure of Solutions of the time-dependent Schroedinger equation and of certain classes of evolution nonlinear PDEs Abstract of Proposed ResearchOvidiu Costin The project proposes new methods for establishing absence of discrete Floquet spectrum in the time-dependent Schroedinger equation of one particle in periodic external fields, which are not necessarily small. Such results imply physical phenomena including ionization. These methods, based on generalized Borel summation, are currently being developed by the PI and his collaborators. They can now be applied to realistic quantum systems such as the time-dependent Hydrogen atom in external fields. Another set of questions that will be analyzed by generalized Borel summation is the rigorous study of existence, uniqueness and especially formation of singularities in nonlinear partial differential equations. Other extensions of these methods will also be investigated. Time dependent quantum phenomena and properties of nonlinear partial differential equations play a key role in physics, chemistry as well as in other sciences and in technology. The mathematical methods to be developed under this grant will provide some innovative approaches to the analysis and approximation of solutions of these equations.
本课题提出了在不一定小的周期外场中建立单粒子时变薛定谔方程离散Floquet谱不存在的新方法。这样的结果暗示了包括电离在内的物理现象。这些基于广义Borel求和的方法目前正在由PI和他的合作者开发。它们现在可以应用于现实的量子系统,如外场中随时间变化的氢原子。用广义Borel求和分析的另一组问题是对非线性偏微分方程的存在性、唯一性,特别是奇点的形成的严格研究。我们还将研究这些方法的其他扩展。非线性偏微分方程的时变量子现象和性质在物理、化学以及其他科学和技术中起着关键作用。在这笔赠款下发展的数学方法将为分析和近似这些方程的解提供一些创新的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ovidiu Costin其他文献
Foundational aspects of singular integrals
- DOI:
10.1016/j.jfa.2014.09.005 - 发表时间:
2014-12-15 - 期刊:
- 影响因子:
- 作者:
Ovidiu Costin;Harvey M. Friedman - 通讯作者:
Harvey M. Friedman
Decay versus survival of a localized state subjected to harmonic forcing: exact results
受到谐波强迫的局部状态的衰变与生存:精确结果
- DOI:
10.1088/0305-4470/35/42/305 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
A. Rokhlenko;Ovidiu Costin;J. Lebowitz - 通讯作者:
J. Lebowitz
A ug 2 00 6 Nonperturbative analysis of a model quantum system under time periodic forcing
A ug 2 00 6 时间周期强迫下模型量子系统的非微扰分析
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Ovidiu Costin;R. Costin;J. Lebowitz;A. Rokhlenko - 通讯作者:
A. Rokhlenko
The blockage problem
堵塞问题
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Ovidiu Costin;J. Lebowitz;E. Speer;A. Troiani - 通讯作者:
A. Troiani
Behavior of lacunary series at the natural boundary
自然边界处的空隙系列的行为
- DOI:
10.1016/j.aim.2009.06.011 - 发表时间:
2008 - 期刊:
- 影响因子:1.7
- 作者:
Ovidiu Costin;Min Huang - 通讯作者:
Min Huang
Ovidiu Costin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ovidiu Costin', 18)}}的其他基金
Non-Perturbative Analysis of Physical and Mathematical Models
物理和数学模型的非微扰分析
- 批准号:
2206241 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Development of Non-Perturbative Approaches to Partial Differential Equations Arising in Physical Applications
物理应用中出现的偏微分方程的非微扰方法的发展
- 批准号:
1515755 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Continuing Grant
Borel Summation and Applications to PDEs
Borel 求和及其在偏微分方程中的应用
- 批准号:
0807266 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Nonlinear PDE's and Integro-Differential Equations in the Complex Plane
合作研究:复平面上的非线性偏微分方程和积分微分方程
- 批准号:
0601226 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Nonlinear PDE's and Integro-Differential Equations in the Complex Plane
合作研究:复平面上的非线性偏微分方程和积分微分方程
- 批准号:
0406193 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Nonlinear PDEs and Integro-Differential Equations in the Complex Plane
合作研究:复平面上的非线性偏微分方程和积分微分方程
- 批准号:
0103807 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Standard Grant
Theory and Applications of Exponential Asymptotics
指数渐进理论与应用
- 批准号:
9996365 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Standard Grant
Theory and Applications of Exponential Asymptotics
指数渐进理论与应用
- 批准号:
9704968 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Large time behavior of solutions to nonlinear hyperbolic and dispersive equations with weakly dissipative structure
弱耗散结构非线性双曲和色散方程解的大时间行为
- 批准号:
22KJ2801 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
BioSense: Accelerating Biological Research through Innovative Real-time, Multiparametric Cell Culture Monitoring Solutions
BioSense:通过创新的实时多参数细胞培养监测解决方案加速生物研究
- 批准号:
10075445 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant for R&D
Asymptotic behavior of global in time solutions to the viscous conservation laws
粘性守恒定律全局时间解的渐近行为
- 批准号:
22K03371 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Time-Synchronized Estimation in Power Systems: Unique Challenges and Innovative Solutions
职业:电力系统中的时间同步估计:独特的挑战和创新的解决方案
- 批准号:
2145063 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
REMEDY: REal tiME DairY. Providing solutions for farmers, vets, consultants and the environment.
补救措施:实时乳制品。
- 批准号:
48717 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Collaborative R&D
JST: SCC-PG: Socially-integrated Technological Solutions for Real-time Response and Neighborhood Survival After Extreme Events
JST:SCC-PG:极端事件后实时响应和邻里生存的社会一体化技术解决方案
- 批准号:
1951418 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Custom-built real-time imaging solutions (I2I - phase 1)
定制的实时成像解决方案(I2I - 第 1 阶段)
- 批准号:
538562-2019 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Idea to Innovation
Challenges to unexplored fields of research on the Cauchy problem for systems of quasi-linear wave equations--large-time behavior and regularity of solutions--
拟线性波动方程组柯西问题的未探索领域研究面临的挑战——解的大时间行为和规律性——
- 批准号:
18K03365 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Using Causal Diagrams to Visualize Solutions for the Built-In Selection Bias of the HR in the Context of Time-Varying Exposures: An example from asthma research
使用因果图可视化随时间变化的暴露背景下 HR 内置选择偏差的解决方案:哮喘研究的一个例子
- 批准号:
364575 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Cost benefit of Cloud based solutions for Real Time Data Management
基于云的实时数据管理解决方案的成本效益
- 批准号:
514204-2017 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)