A Stochastic Differential Equation Approach to Studying Landslide Failure and Size Distributions
研究滑坡破坏和规模分布的随机微分方程方法
基本信息
- 批准号:0229846
- 负责人:
- 金额:$ 21.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-05-15 至 2006-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A major unsolved problem in geomorphology is this: when a slope begins to fail, how big will the ensuing landslide be? The span of possible landslide sizes is enormous, with potential failures ranging in scale from meters to kilometers - so it's unfortunate, particularly for hazard assessment, that we remain unable to predict such sizes. This inability persists despite the fact that we now have rather good constraints on the size-frequency distribution of landslides at a regional scale. This project takes a new theoretical tack, one that involves the use of stochastic differential equations, to address in concert the issues of individual landslide propagation and ensemble landslide sizedistribution. We have found that a simple, stochastic calculus model for slope failure can explain the full size-frequency distribution of landslides, including the mean landslide size and both the power-law scaling and non-scaling components of the distribution. We are developing this theory in order to address the following key questions: (1) how does the mean landslide size in an ensemble distribution relate to reality? - if it is not an artifact of mapping resolution, does it relate to physical properties such as soil depth, cohesion, and lithology, or is it simply a function of mean hillslope scale? (2) are the physical assumptions of the stochastic theory borne out by field observations? (3) can we be more precise in our data analysis and modeling of different slope failure mechanisms? (4) do rockfalls occur by an entirely different stochastic process with an altogether different size-frequency distribution? The outcome of our efforts will be a deeper understanding of the stochastic behavior of hillslope failure and landslide hazard.
地貌学中尚未解决的一个主要问题是:当一个斜坡开始坍塌时,随之而来的滑坡会有多大?可能的滑坡规模跨度是巨大的,潜在的破坏范围从米到公里不等——所以不幸的是,特别是对于危害评估,我们仍然无法预测这样的规模。这种无能仍然存在,尽管我们现在在区域范围内对滑坡的大小-频率分布有相当好的限制。该项目采用了一种新的理论方法,其中包括使用随机微分方程来解决单个滑坡传播和总体滑坡尺寸分布的问题。我们发现,一个简单的边坡破坏随机演算模型可以解释滑坡的全尺寸-频率分布,包括平均滑坡尺寸以及分布的幂律标度和非标度分量。我们发展这一理论是为了解决以下关键问题:(1)总体分布中的平均滑坡大小如何与现实相关联?-如果它不是绘图分辨率的产物,它是否与物理性质有关,如土壤深度,凝聚力和岩性,或者它只是平均山坡尺度的函数?(2)现场观测是否证实了随机理论的物理假设?(3)对不同边坡破坏机制的数据分析和建模是否能够更加精确?(4)岩崩的发生是否具有完全不同的随机过程和完全不同的大小-频率分布?我们努力的结果将是对边坡破坏和滑坡灾害的随机行为有更深入的了解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Colin Stark其他文献
On the cusp of failure
处于失败的边缘
- DOI:
10.1038/ngeo714 - 发表时间:
2009-12-01 - 期刊:
- 影响因子:16.100
- 作者:
Colin Stark - 通讯作者:
Colin Stark
Colin Stark的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Colin Stark', 18)}}的其他基金
Collaborative Research: The 2015 Taan Fiord landslide tsunami: An interdisciplinary study of cause & effect
合作研究:2015 年塔安峡湾山体滑坡海啸:原因的跨学科研究
- 批准号:
1639643 - 财政年份:2016
- 资助金额:
$ 21.42万 - 项目类别:
Standard Grant
EarthCube Building Blocks: Collaborative Proposal: A Geo-Semantic Framework for Integrating Long-Tail Data and Models
EarthCube 构建模块:协作提案:集成长尾数据和模型的地理语义框架
- 批准号:
1440229 - 财政年份:2014
- 资助金额:
$ 21.42万 - 项目类别:
Standard Grant
Hazards SEES Type 1: Predicting Landslide Runout and Granular Flow Hazard: Enhanced-g Centrifuge Experiments, Contact Dynamics Model Development and Theoretical Study
灾害 SEES 类型 1:预测滑坡跳动和颗粒流灾害:增强型离心机实验、接触动力学模型开发和理论研究
- 批准号:
1331499 - 财政年份:2013
- 资助金额:
$ 21.42万 - 项目类别:
Standard Grant
Collaborative Research: Unlocking The Seismic Signature Of Rivers
合作研究:解锁河流的地震特征
- 批准号:
1148176 - 财政年份:2012
- 资助金额:
$ 21.42万 - 项目类别:
Standard Grant
Collaborative Research: A field, laboratory and theoretical study of mixed bedrock-alluvial meandering rivers
合作研究:混合基岩冲积曲流河的现场、实验室和理论研究
- 批准号:
1124114 - 财政年份:2011
- 资助金额:
$ 21.42万 - 项目类别:
Standard Grant
EAGER: Catastrophic landslide dynamics from seismic wave inversion and satellite remote sensing
EAGER:地震波反演和卫星遥感的灾难性滑坡动力学
- 批准号:
1150072 - 财政年份:2011
- 资助金额:
$ 21.42万 - 项目类别:
Standard Grant
Collaborative Research: Climatological, Vegetational, and Human-Related Controls on Channelization and Shallow Landsliding Quantified Through Objective Analysis of LiDAR Data
合作研究:通过激光雷达数据的客观分析量化渠道化和浅层滑坡的气候、植被和人类相关控制
- 批准号:
1063231 - 财政年份:2011
- 资助金额:
$ 21.42万 - 项目类别:
Standard Grant
Collaborative Research: Geomorphic transport laws, landscape evolution, and fractional calculus
合作研究:地貌传输定律、景观演化和分数阶微积分
- 批准号:
0823953 - 财政年份:2008
- 资助金额:
$ 21.42万 - 项目类别:
Standard Grant
An Exploration of the Role of Mountain River Sinuosity in Landscape Dynamics
山地河流蜿蜒度在景观动力学中的作用探讨
- 批准号:
0617557 - 财政年份:2006
- 资助金额:
$ 21.42万 - 项目类别:
Standard Grant
Monitoring Mountain Rivers From Space: A Pilot Study of Bedrock River Flow Measurement Using Ultra-High Resolution Optical Satellite Imagery
从太空监测山区河流:利用超高分辨率光学卫星图像进行基岩河流量测量的试点研究
- 批准号:
0550087 - 财政年份:2005
- 资助金额:
$ 21.42万 - 项目类别:
Standard Grant
相似海外基金
Speech Processing Based on Deep Gaussian Process With Stochastic Differential Equation Layers
基于随机微分方程层深度高斯过程的语音处理
- 批准号:
21K11955 - 财政年份:2021
- 资助金额:
$ 21.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Global Non-Gaussian Stochastic Partial Differential Equation Models for Assessing Future Health of Ecohydrologic Systems
用于评估生态水文系统未来健康状况的全局非高斯随机偏微分方程模型
- 批准号:
2014166 - 财政年份:2020
- 资助金额:
$ 21.42万 - 项目类别:
Continuing Grant
Training Neural Networks to Discover Stochastic Differential Equation Based Models
训练神经网络以发现基于随机微分方程的模型
- 批准号:
2277653 - 财政年份:2019
- 资助金额:
$ 21.42万 - 项目类别:
Studentship
Propose and demonstrate the regularized recursive estimation for stochastic differential equation
提出并论证了随机微分方程的正则化递归估计
- 批准号:
18K18012 - 财政年份:2018
- 资助金额:
$ 21.42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Interdisciplinary research in mathematical/data science and simulation science for stochastic differential equation models
随机微分方程模型的数学/数据科学和模拟科学的跨学科研究
- 批准号:
17H01100 - 财政年份:2017
- 资助金额:
$ 21.42万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Backward stochastic differential equation and nonlinear stochastic integration
后向随机微分方程和非线性随机积分
- 批准号:
17K05297 - 财政年份:2017
- 资助金额:
$ 21.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RUI: Efficient Adaptive Backward Stochastic Differential Equation Methods for Nonlinear Filtering Problems
RUI:解决非线性滤波问题的高效自适应后向随机微分方程方法
- 批准号:
1720222 - 财政年份:2017
- 资助金额:
$ 21.42万 - 项目类别:
Continuing Grant
Stochastic differential equation and random field theory applied to waves in random media
随机微分方程和随机场论应用于随机介质中的波
- 批准号:
312798-2011 - 财政年份:2015
- 资助金额:
$ 21.42万 - 项目类别:
Discovery Grants Program - Individual
Description of light and tera-hertz wave quantum-mechanical receiver circuits by nonlinear stochastic differential equation and building their circuit simulator models
通过非线性随机微分方程描述光和太赫兹波量子力学接收器电路并建立其电路模拟器模型
- 批准号:
15K06075 - 财政年份:2015
- 资助金额:
$ 21.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Method of Heun's Differential Equation in Applied Stochastic Processes
应用随机过程中Heun微分方程方法的发展
- 批准号:
15K11993 - 财政年份:2015
- 资助金额:
$ 21.42万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research