Holomorphic Disks and Low-Dimensional Topology
全纯盘和低维拓扑
基本信息
- 批准号:0234311
- 负责人:
- 金额:$ 12.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-08-15 至 2005-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0234311Peter OzsvathThe proposal deals invariants for three- and four-dimensional manifolds,specifically those which the proposer constructed in collaboration ZoltanSzabo. These invariants appear to be closely related to gauge-theoretic(Donaldson and Seiberg-Witten) invariants, except that they have theadvantage of being more combinatorial in nature than their gauge-theoreticpredecessors, and hence easier to calculate. To illustrate their strength,one can reprove some results in four-dimensional differential topologywhich were obtained previously using gauge theory. These invariants alsohave new topological applications which go beyond gauge theory. Forinstance, they can be used to give new restrictions on knots whosesurgeries give lens spaces. The author hopes to further extend thistheory, to see what further insight they may give to topology indimensions three and four.The proposal deals with studying the intrinsic structure of three- andfour-dimensional spaces. The study of four-dimensional spaces wasrevolutionized by Simon Donaldson in the early 80's by his introduction of"gauge-theoretic techniques". These techniques associate to a space thespace of solutions of certain partial differential equations (which comefrom mathematical physics). Course properties of these solution spaces arethen used to give insight into the finer structure of the underlyingspaces on which the equations are defined. The proposal deals with efforts at circumventing these (often difficult to identify) auxiliary spaces of solutions, to give more directly combinatorial approaches to understanding the way three- and four-dimensional spaces fit together.
DMS-0234311 Peter Ozsvath该提案涉及三维和四维流形的不变量,特别是提案者与ZoltanSzabo合作构建的不变量。这些不变量似乎与规范理论(唐纳森和塞伯格-威滕)不变量密切相关,除了它们具有比规范理论前辈更组合的优点,因此更容易计算。为了说明它们的强度,我们可以重新证明以前用规范理论得到的四维微分拓扑中的一些结果。这些不变量还具有超越规范理论的新拓扑应用。例如,他们可以用来给新的限制,纽结谁sursesurgently给透镜空间。作者希望进一步扩展这一理论,看看他们可能会给三维和四维拓扑学带来什么样的进一步见解。这一提议涉及研究三维和四维空间的内在结构。四维空间的研究是由西蒙唐纳森在80年代初通过他的“规范理论技术”的介绍革命。这些技术与某些偏微分方程(来自数学物理)的解的空间相关联。这些解决方案空间的课程属性然后被用来给洞察到underlyingspaces上的方程被定义的更精细的结构。该提案涉及努力绕过这些(通常很难识别)辅助空间的解决方案,以更直接的组合方法来理解三维和四维空间的方式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Ozsvath其他文献
Peter Ozsvath的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Ozsvath', 18)}}的其他基金
Heegaard Diagrams and Holomorphic Disks
Heegaard 图和全纯圆盘
- 批准号:
2104536 - 财政年份:2021
- 资助金额:
$ 12.46万 - 项目类别:
Continuing Grant
Heegaard Diagrams and Holomorphic Disks
Heegaard 图和全纯圆盘
- 批准号:
1708284 - 财政年份:2017
- 资助金额:
$ 12.46万 - 项目类别:
Continuing Grant
RTG: Geometry and Topology at Princeton
RTG:普林斯顿大学的几何和拓扑
- 批准号:
1502424 - 财政年份:2015
- 资助金额:
$ 12.46万 - 项目类别:
Continuing Grant
Contact structures and Floer homology on 3-manifolds with boundary
带边界的 3 流形上的接触结构和 Floer 同源性
- 批准号:
1506157 - 财政年份:2015
- 资助金额:
$ 12.46万 - 项目类别:
Standard Grant
Heegaard diagrams and holomorphic disks
Heegaard 图和全纯盘
- 批准号:
1405114 - 财政年份:2014
- 资助金额:
$ 12.46万 - 项目类别:
Continuing Grant
Heegaard diagrams and holomorphic disks
Heegaard 图和全纯盘
- 批准号:
1258274 - 财政年份:2012
- 资助金额:
$ 12.46万 - 项目类别:
Continuing Grant
Heegaard diagrams and holomorphic disks
Heegaard 图和全纯盘
- 批准号:
1105810 - 财政年份:2011
- 资助金额:
$ 12.46万 - 项目类别:
Continuing Grant
Heegaard Diagrams and Holomorphic Disks
Heegaard 图和全纯圆盘
- 批准号:
0804121 - 财政年份:2008
- 资助金额:
$ 12.46万 - 项目类别:
Continuing Grant
Heegaard Diagrams and Holomorphic Disks
Heegaard 图和全纯圆盘
- 批准号:
0505811 - 财政年份:2005
- 资助金额:
$ 12.46万 - 项目类别:
Continuing Grant
Seiberg-Witten Invariants in Dimension three and four
第三维和第四维的 Seiberg-Witten 不变量
- 批准号:
9971950 - 财政年份:1999
- 资助金额:
$ 12.46万 - 项目类别:
Continuing Grant
相似国自然基金
Accretion variability and its consequences: from protostars to planet-forming disks
- 批准号:12173003
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Exploring the Compositions of Exoplanetary Systems with Observations and Modeling of Dusty Circumstellar Disks
合作研究:通过尘埃环星盘的观测和建模探索系外行星系统的组成
- 批准号:
2307613 - 财政年份:2023
- 资助金额:
$ 12.46万 - 项目类别:
Standard Grant
Collaborative Research: Exploring the Compositions of Exoplanetary Systems with Observations and Modeling of Dusty Circumstellar Disks
合作研究:通过尘埃环星盘的观测和建模探索系外行星系统的组成
- 批准号:
2307612 - 财政年份:2023
- 资助金额:
$ 12.46万 - 项目类别:
Standard Grant
Nonlocal Magneto-Curvature Instabilities and their Associated Nonlinear Transport in Astrophysical Disks
天体物理盘中的非局域磁曲率不稳定性及其相关的非线性输运
- 批准号:
2308839 - 财政年份:2023
- 资助金额:
$ 12.46万 - 项目类别:
Standard Grant
GEPOD: Global Evolution of Planet-fOrming Disks
GEPOD:行星形成盘的全球演化
- 批准号:
EP/Y014383/1 - 财政年份:2023
- 资助金额:
$ 12.46万 - 项目类别:
Research Grant
Revealing dust growth in protoplanetary disks from ALMA observations
ALMA 观测揭示原行星盘中尘埃的生长
- 批准号:
22KJ1435 - 财政年份:2023
- 资助金额:
$ 12.46万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Magnetohydrodynamic Simulations Revealing Formation Process of Terrestrial Planets in Protoplanetary Disks
磁流体动力学模拟揭示了原行星盘中类地行星的形成过程
- 批准号:
22KJ0155 - 财政年份:2023
- 资助金额:
$ 12.46万 - 项目类别:
Grant-in-Aid for JSPS Fellows
RUI: Vertical Structure of Gas and Dust in Debris Disks
RUI:碎片盘中气体和灰尘的垂直结构
- 批准号:
2307920 - 财政年份:2023
- 资助金额:
$ 12.46万 - 项目类别:
Standard Grant
The Astrochemical Legacy of Molecular Clouds to Protoplanetary Disks
分子云对原行星盘的天体化学遗产
- 批准号:
2893415 - 财政年份:2023
- 资助金额:
$ 12.46万 - 项目类别:
Studentship
Evolution of the radial and vertical distribution of protoplanetary disks from scattered-light observations
散射光观测中原行星盘径向和垂直分布的演化
- 批准号:
2859987 - 财政年份:2023
- 资助金额:
$ 12.46万 - 项目类别:
Studentship
Constructing the theory of rocky planet formation in cold protoplanetary disks
构建冷原行星盘中岩石行星形成的理论
- 批准号:
23H01227 - 财政年份:2023
- 资助金额:
$ 12.46万 - 项目类别:
Grant-in-Aid for Scientific Research (B)