Contact structures and Floer homology on 3-manifolds with boundary
带边界的 3 流形上的接触结构和 Floer 同源性
基本信息
- 批准号:1506157
- 负责人:
- 金额:$ 15.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigator aims to understand the interplay between contact geometry in 3 dimensions and invariants of 3-manifolds. Contact structures are geometric objects which originated in the study of optics in the 19th century; in recent years they have become important tools in low-dimensional topology, providing information about the shapes of 3- and 4-dimensional spaces such as our universe, and in knot theory, which has seen emerging links to such topics as protein folding. Many of the tools which the PI uses to study such spaces, including Floer homology theories, draw heavily from mathematical physics, and they contain contact-geometric data which has provided a wealth of information about both the contact structures themselves and about the spaces in which they reside. The proposed research would investigate such data and uncover connections which it provides between disparate areas of mathematics, including algebra, topology, and dynamics.The PI intends to study invariants of contact structures and 3-manifolds, especially homological invariants of 3-manifolds with boundary, which arise from gauge theory and symplectic geometry. The first goal of this project is to develop applications to topology and to symplectic geometry of contact invariants in several Floer homology theories for sutured 3-manifolds. These potential applications include computable obstructions to Lagrangian concordances between Legendrian knots; bounds on the number of Reeb orbits in a contact 3-manifold, generalizing the proof of the Weinstein conjecture in this setting; and an intriguing conjecture relating Stein fillings of a 3-manifold to representations of its fundamental group. The second goal is to establish a relationship between different sutured Floer homology theories, whose corresponding closed 3-manifold invariants (Heegaard Floer homology, monopole Floer homology, and embedded contact homology) are now all known to be isomorphic, and to identify their respective contact invariants as well. The third goal is to investigate an emerging connection between Legendrian contact homology (LCH) and new sheaf-theoretic Legendrian knot invariants, and in doing so to apply algebro-geometric techniques to problems in contact geometry and hopefully understand the relationship of LCH to classical knot invariants.
主要研究者的目的是了解接触几何在3维和3流形的不变量之间的相互作用。 接触结构是一种几何对象,起源于19世纪的光学研究;近年来,它们已成为低维拓扑学的重要工具,提供了关于三维和四维空间(如我们的宇宙)形状的信息,并在纽结理论中,它已经与蛋白质折叠等主题建立了联系。 PI用来研究这种空间的许多工具,包括Floer同调理论,都大量来自数学物理,它们包含接触几何数据,这些数据提供了关于接触结构本身和它们所处空间的丰富信息。 拟议的研究将调查此类数据,并揭示它在代数、拓扑和动力学等不同数学领域之间提供的联系。PI打算研究接触结构和3-流形的不变量,特别是具有边界的3-流形的同调不变量,它源于规范理论和辛几何。 这个项目的第一个目标是发展应用拓扑和辛几何的接触不变量在几个弗洛尔同源理论缝合3流形。 这些潜在的应用包括可计算的障碍拉格朗日协调勒让德结之间;边界上的数量Reeb轨道在接触3流形,推广证明温斯坦猜想在这种情况下;和一个有趣的猜想有关Stein填充3流形表示其基本群。 第二个目标是建立不同的缝合弗洛尔同调理论之间的关系,其相应的封闭3-流形不变量(Heegaard弗洛尔同调,Heegaard弗洛尔同调和嵌入接触同调)现在都已知是同构的,并确定它们各自的接触不变量。 第三个目标是研究勒让德接触同调(LCH)和新的层理论勒让德结不变量之间的新兴联系,并在这样做时将代数几何技术应用于接触几何问题,并希望了解LCH与经典结不变量的关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Ozsvath其他文献
Peter Ozsvath的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Ozsvath', 18)}}的其他基金
Heegaard Diagrams and Holomorphic Disks
Heegaard 图和全纯圆盘
- 批准号:
2104536 - 财政年份:2021
- 资助金额:
$ 15.95万 - 项目类别:
Continuing Grant
Heegaard Diagrams and Holomorphic Disks
Heegaard 图和全纯圆盘
- 批准号:
1708284 - 财政年份:2017
- 资助金额:
$ 15.95万 - 项目类别:
Continuing Grant
RTG: Geometry and Topology at Princeton
RTG:普林斯顿大学的几何和拓扑
- 批准号:
1502424 - 财政年份:2015
- 资助金额:
$ 15.95万 - 项目类别:
Continuing Grant
Heegaard diagrams and holomorphic disks
Heegaard 图和全纯盘
- 批准号:
1405114 - 财政年份:2014
- 资助金额:
$ 15.95万 - 项目类别:
Continuing Grant
Heegaard diagrams and holomorphic disks
Heegaard 图和全纯盘
- 批准号:
1258274 - 财政年份:2012
- 资助金额:
$ 15.95万 - 项目类别:
Continuing Grant
Heegaard diagrams and holomorphic disks
Heegaard 图和全纯盘
- 批准号:
1105810 - 财政年份:2011
- 资助金额:
$ 15.95万 - 项目类别:
Continuing Grant
Heegaard Diagrams and Holomorphic Disks
Heegaard 图和全纯圆盘
- 批准号:
0804121 - 财政年份:2008
- 资助金额:
$ 15.95万 - 项目类别:
Continuing Grant
Heegaard Diagrams and Holomorphic Disks
Heegaard 图和全纯圆盘
- 批准号:
0505811 - 财政年份:2005
- 资助金额:
$ 15.95万 - 项目类别:
Continuing Grant
Holomorphic Disks and Low-Dimensional Topology
全纯盘和低维拓扑
- 批准号:
0234311 - 财政年份:2002
- 资助金额:
$ 15.95万 - 项目类别:
Standard Grant
Seiberg-Witten Invariants in Dimension three and four
第三维和第四维的 Seiberg-Witten 不变量
- 批准号:
9971950 - 财政年份:1999
- 资助金额:
$ 15.95万 - 项目类别:
Continuing Grant
相似国自然基金
飞行器板壳结构红外热波无损检测基础理论和关键技术的研究
- 批准号:60672101
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:面上项目
新型嘧啶并三环化合物的合成研究
- 批准号:20572032
- 批准年份:2005
- 资助金额:25.0 万元
- 项目类别:面上项目
磁层重联区相干结构动力学过程的观测研究
- 批准号:40574067
- 批准年份:2005
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
Design of metal structures of custom composition using additive manufacturing
使用增材制造设计定制成分的金属结构
- 批准号:
2593424 - 财政年份:2025
- 资助金额:
$ 15.95万 - 项目类别:
Studentship
Optimisation of Buildable Structures for 3D Concrete Printing
3D 混凝土打印可建造结构的优化
- 批准号:
DP240101708 - 财政年份:2024
- 资助金额:
$ 15.95万 - 项目类别:
Discovery Projects
PriorCircuit:Circuit mechanisms for computing and exploiting statistical structures in sensory decision making
PriorCircuit:在感官决策中计算和利用统计结构的电路机制
- 批准号:
EP/Z000599/1 - 财政年份:2024
- 资助金额:
$ 15.95万 - 项目类别:
Research Grant
Tunable Tensegrity Structures and Metamaterials
可调谐张拉整体结构和超材料
- 批准号:
2323276 - 财政年份:2024
- 资助金额:
$ 15.95万 - 项目类别:
Standard Grant
CAREER: Emergence of in-liquid structures in metallic alloys by nucleation and growth
职业:通过成核和生长在金属合金中出现液态结构
- 批准号:
2333630 - 财政年份:2024
- 资助金额:
$ 15.95万 - 项目类别:
Continuing Grant
Nonlocal Elastic Metamaterials: Leveraging Intentional Nonlocality to Design Programmable Structures
非局域弹性超材料:利用有意的非局域性来设计可编程结构
- 批准号:
2330957 - 财政年份:2024
- 资助金额:
$ 15.95万 - 项目类别:
Standard Grant
CAREER: High-Resolution Hybrid Printing of Wearable Heaters with Shape-Changeable Structures
职业:具有可变形结构的可穿戴加热器的高分辨率混合打印
- 批准号:
2340414 - 财政年份:2024
- 资助金额:
$ 15.95万 - 项目类别:
Standard Grant
Algebraic Structures in String Topology
弦拓扑中的代数结构
- 批准号:
2405405 - 财政年份:2024
- 资助金额:
$ 15.95万 - 项目类别:
Standard Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 15.95万 - 项目类别:
Continuing Grant
Development of an entirely Lagrangian hydro-elastoviscoplastic FSI solver for design of resilient ocean/coastal structures
开发完全拉格朗日水弹粘塑性 FSI 求解器,用于弹性海洋/沿海结构的设计
- 批准号:
24K07680 - 财政年份:2024
- 资助金额:
$ 15.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)