Heegaard Diagrams and Holomorphic Disks
Heegaard 图和全纯圆盘
基本信息
- 批准号:1708284
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This National Science Foundation award supports research to develop new tools to study three- and four-dimensional spaces as well as knotted curves, bringing together techniques from many mathematical disciplines. As these objects closely relate to our physical world and the space-time, this line of research is partially inspired by modern physics. As such, it lies at a fertile intellectual crossroads, bringing new perspectives to neighboring subjects, and providing novel methods for attacking old problems. The PI and his collaborators pioneered new invariants, known as "Heegaard-Floer homology" and "knot Floer homology," and developed a technique known as "bordered Floer homology" for effectively utilizing simple component pieces of a space. Research funded by this award deals with further developing these bordered techniques for three-dimensional spaces and for knotted curves, to get both a better conceptual understanding of these invariants, and for giving effective computational techniques for studying them.In collaboration with Zoltan Szabo, the PI constructed an invariant for three- and four-dimensional spaces known as the "Heegaard-Floer homology." Heegaard-Floer homology brings together tools from various mathematical disciplines, including symplectic geometry, analysis, and homological algebra, to study problems in knot theory and low-dimensional topology, in a way that was partially inspired by modern physics. A variant of this construction, called "knot Floer homology," is used to study knots in three-dimensional manifolds. In collaboration with Robert Lipshitz and Dylan Thurston, the PI defined "bordered Floer homology," a technique for reconstructing one variant of Heegaard-Floer homology from a three-manifold that is decomposed into simple component pieces. In the research funded by this award, the PI aims to study bordered Floer homology as a tool for studying various versions of Heegaard-Floer homology and knot Floer homology. Part of the project will start by extending the bordered theory to include the full (unspecialized) Heegaard-Floer homology for three-manifolds with torus boundary. In a different direction, bordered Floer homology is extended to a tool for studying and computing knot Floer homology.
这个国家科学基金会奖支持研究开发新的工具来研究三维和四维空间以及打结曲线,汇集了许多数学学科的技术。由于这些物体与我们的物理世界和时空密切相关,这一研究路线部分受到现代物理学的启发。因此,它位于一个肥沃的知识十字路口,为邻近的学科带来新的视角,并为解决老问题提供新的方法。PI和他的合作者开创了新的不变量,称为“Heegaard-Floer同源性”和“结Floer同源性”,并开发了一种称为“边界Floer同源性”的技术,用于有效地利用空间的简单组成部分。该奖项资助的研究涉及进一步发展三维空间和打结曲线的边界技术,以更好地理解这些不变量的概念,并为研究它们提供有效的计算技术。PI与Zoltan Szabo合作,构建了三维和四维空间的不变量,称为“Heegaard-Floer同源性”。“Heegaard-Floer同源性汇集了来自各种数学学科的工具,包括辛几何,分析和同调代数,以研究纽结理论和低维拓扑学中的问题,部分受到现代物理学的启发。这种构造的一个变体,称为“结弗洛尔同调”,用于研究三维流形中的结。PI与罗伯特·利普希茨(Robert Lipshitz)和迪伦·瑟斯顿(Dylan Thurston)合作,定义了“有边弗洛尔同调”(bordered Floer homology),这是一种从分解成简单组成部分的三流形重建Heegaard-Floer同调的一种变体的技术。在该奖项资助的研究中,PI旨在研究边界Floer同源性,作为研究Heegaard-Floer同源性和结Floer同源性的各种版本的工具。 该项目的一部分将从扩展边界理论开始,以包括具有环面边界的三流形的完整(非专门化)Heegaard-Floer同调。在另一个方向上,加边Floer同调被扩展为研究和计算纽结Floer同调的工具。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kauffman states, bordered algebras, and a bigraded knot invariant
考夫曼状态、有界代数和二阶结不变量
- DOI:10.1016/j.aim.2018.02.017
- 发表时间:2018
- 期刊:
- 影响因子:1.7
- 作者:Ozsváth, Peter;Szabó, Zoltán
- 通讯作者:Szabó, Zoltán
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Ozsvath其他文献
Peter Ozsvath的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Ozsvath', 18)}}的其他基金
Heegaard Diagrams and Holomorphic Disks
Heegaard 图和全纯圆盘
- 批准号:
2104536 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
RTG: Geometry and Topology at Princeton
RTG:普林斯顿大学的几何和拓扑
- 批准号:
1502424 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Contact structures and Floer homology on 3-manifolds with boundary
带边界的 3 流形上的接触结构和 Floer 同源性
- 批准号:
1506157 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Heegaard diagrams and holomorphic disks
Heegaard 图和全纯盘
- 批准号:
1405114 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Heegaard diagrams and holomorphic disks
Heegaard 图和全纯盘
- 批准号:
1258274 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Heegaard diagrams and holomorphic disks
Heegaard 图和全纯盘
- 批准号:
1105810 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Heegaard Diagrams and Holomorphic Disks
Heegaard 图和全纯圆盘
- 批准号:
0804121 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Heegaard Diagrams and Holomorphic Disks
Heegaard 图和全纯圆盘
- 批准号:
0505811 - 财政年份:2005
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Holomorphic Disks and Low-Dimensional Topology
全纯盘和低维拓扑
- 批准号:
0234311 - 财政年份:2002
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Seiberg-Witten Invariants in Dimension three and four
第三维和第四维的 Seiberg-Witten 不变量
- 批准号:
9971950 - 财政年份:1999
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
Optimal Grain Diagrams: Mathematical Analysis and Algorithms
最佳晶粒图:数学分析和算法
- 批准号:
EP/X035883/1 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Efficient Computation of Generalized Persistence Diagrams
广义持久图的高效计算
- 批准号:
2324632 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: New Phase Diagrams for Predictive Solvothermal Synthesis in Non-Aqueous Solvents
合作研究:非水溶剂中预测溶剂热合成的新相图
- 批准号:
2240281 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: New Phase Diagrams for Predictive Solvothermal Synthesis in Non-Aqueous Solvents
合作研究:非水溶剂中预测溶剂热合成的新相图
- 批准号:
2240282 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Studies of five-dimensional supersymmetric gauge theories from web diagrams which characterize Calabi-Yau spaces
从表征 Calabi-Yau 空间的网络图研究五维超对称规范理论
- 批准号:
23K03396 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation of magnetic field phase diagrams and magnetic field synthesis processes of binary alloy systems containing many types and multiple magnetic phases
多类型、多磁相二元合金体系磁场相图及磁场合成过程研究
- 批准号:
23H01714 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Visualization of Qualities and Abilities in Art Education for Children Aged 0-6 Years -Construction of Curriculum Diagrams for Enrollment-
0-6岁儿童艺术教育素质能力可视化-招生课程图构建-
- 批准号:
23K02309 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Time-Temperature Transformation Phase Diagrams for Developing Advanced Glass Ceramic Nuclear Waste-forms
开发先进玻璃陶瓷核废料形式的时间-温度转变相图
- 批准号:
2889462 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Studentship
Semantic study of the phenomenon where explanations with diagrams drive inference in particular directions
对图表解释推动特定方向推理的现象进行语义研究
- 批准号:
23K00041 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of Defect Phase Diagrams for Ordered Laves Phases
创建有序 Laves 相的缺陷相图
- 批准号:
576837-2022 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Alliance Grants