Heegaard Diagrams and Holomorphic Disks
Heegaard 图和全纯圆盘
基本信息
- 批准号:2104536
- 负责人:
- 金额:$ 36.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project in topology studies "Heegaard Floer homology," which is an invariant for three-and four-dimensional spaces. A variant of this construction, called "knot Floer homology," provides new methods for studying knotted curves in three-dimensional space and answering classical questions about such objects. Both Heegaard Floer homology and the associated knot invariant come in two versions: a simplified one, and a richer one. The simplified version provides interesting three-dimensional information, but the richer version also sheds light on four-dimensional aspects of the theory. Heegaard Floer homology brings together tools from various mathematical disciplines, including symplectic geometry, analysis, and homological algebra to study problems in knot theory and low-dimensional topology, in a way which was partially inspired by modern physics. As such, it lies at a fertile intellectual crossroads, bringing new perspectives to neighboring subjects. Heegaard Floer homology continues to provide novel methods for attacking old problems. The award provides support for graduate students to be engaged in related research.In collaboration with Robert Lipshitz and Dylan Thurston, the PI defined "bordered Floer homology," a technique for reconstructing the simplified version of Heegaard Floer homology from a three-dimensional space that is decomposed into simple component pieces. In collaboration with Szabo, the PI used similar methods to describe the simplified version of knot Floer homology. This project deals with further developing bordered techniques for three-dimensional spaces and also for knots, extending them to the richer versions. This project aims to both give a better conceptual understanding of these invariants, and to give effective computational techniques for calculating them. The project aims to study bordered Floer homology as a tool for studying various versions of Heegaard Floer homology and knot Floer homology. Part of the project will start by extending the bordered theory to include the full (unspecialized) Heegaard Floer homology for three-manifolds with torus boundary. Having established most of the algebraic foundations of this theory, the PI will now turn to the analytical aspects, with a view towards constructing modules for three-manifolds with torus boundary, and a pairing theorem for computing the (unspecialized) Heegaard Floer homology of a three-manifold decomposed along a torus, in terms of the modules assocaited to the pieces. In a different direction, bordered Floer homology is extended to a tool for studying and computing (unspecialized) knot Floer homology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目在拓扑学研究“Heegaard Floer同调”,这是一个不变量的三维和四维空间。这种构造的一个变体,称为“结弗洛尔同源”,提供了新的方法来研究三维空间中的打结曲线,并回答有关此类对象的经典问题。Heegaard Floer同调和相关的纽结不变量都有两个版本:一个简化的版本和一个更丰富的版本。简化的版本提供了有趣的三维信息,但更丰富的版本也揭示了理论的四维方面。Heegaard Floer同调汇集了各种数学学科的工具,包括辛几何,分析和同调代数,以研究纽结理论和低维拓扑中的问题,其部分灵感来自现代物理学。因此,它位于一个肥沃的智力十字路口,为邻近的学科带来新的视角。Heegaard Floer同源性继续为解决老问题提供新的方法。PI与Robert Lipshitz和Dylan Thurston合作,定义了“边界Floer同调”(bordered Floer homology),这是一种将Heegaard Floer同调从三维空间分解为简单的组成部分,重建简化版本的技术。在与Szabo的合作中,PI使用类似的方法来描述结Floer同源性的简化版本。该项目涉及进一步开发三维空间和结的边界技术,并将其扩展到更丰富的版本。 这个项目的目的是提供一个更好的概念理解这些不变量,并提供有效的计算技术来计算它们。该项目旨在研究边界Floer同源性,作为研究Heegaard Floer同源性和knot Floer同源性的各种版本的工具。 该项目的一部分将开始扩展边界理论,包括完整的(非专门化的)Heegaard Floer同调与环面边界的三流形。建立了大部分的代数基础,这一理论,PI现在将转向分析方面,以期建设模块的三个流形与环面边界,和配对定理计算(非专门化)Heegaard Floer同源性的三个流形分解沿着一个环面,在模块assocaited件。在不同的方向,边界Floer同源性扩展到一个工具,用于研究和计算(非专业)结Floer homology.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Ozsvath其他文献
Peter Ozsvath的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Ozsvath', 18)}}的其他基金
Heegaard Diagrams and Holomorphic Disks
Heegaard 图和全纯圆盘
- 批准号:
1708284 - 财政年份:2017
- 资助金额:
$ 36.12万 - 项目类别:
Continuing Grant
RTG: Geometry and Topology at Princeton
RTG:普林斯顿大学的几何和拓扑
- 批准号:
1502424 - 财政年份:2015
- 资助金额:
$ 36.12万 - 项目类别:
Continuing Grant
Contact structures and Floer homology on 3-manifolds with boundary
带边界的 3 流形上的接触结构和 Floer 同源性
- 批准号:
1506157 - 财政年份:2015
- 资助金额:
$ 36.12万 - 项目类别:
Standard Grant
Heegaard diagrams and holomorphic disks
Heegaard 图和全纯盘
- 批准号:
1405114 - 财政年份:2014
- 资助金额:
$ 36.12万 - 项目类别:
Continuing Grant
Heegaard diagrams and holomorphic disks
Heegaard 图和全纯盘
- 批准号:
1258274 - 财政年份:2012
- 资助金额:
$ 36.12万 - 项目类别:
Continuing Grant
Heegaard diagrams and holomorphic disks
Heegaard 图和全纯盘
- 批准号:
1105810 - 财政年份:2011
- 资助金额:
$ 36.12万 - 项目类别:
Continuing Grant
Heegaard Diagrams and Holomorphic Disks
Heegaard 图和全纯圆盘
- 批准号:
0804121 - 财政年份:2008
- 资助金额:
$ 36.12万 - 项目类别:
Continuing Grant
Heegaard Diagrams and Holomorphic Disks
Heegaard 图和全纯圆盘
- 批准号:
0505811 - 财政年份:2005
- 资助金额:
$ 36.12万 - 项目类别:
Continuing Grant
Holomorphic Disks and Low-Dimensional Topology
全纯盘和低维拓扑
- 批准号:
0234311 - 财政年份:2002
- 资助金额:
$ 36.12万 - 项目类别:
Standard Grant
Seiberg-Witten Invariants in Dimension three and four
第三维和第四维的 Seiberg-Witten 不变量
- 批准号:
9971950 - 财政年份:1999
- 资助金额:
$ 36.12万 - 项目类别:
Continuing Grant
相似海外基金
Optimal Grain Diagrams: Mathematical Analysis and Algorithms
最佳晶粒图:数学分析和算法
- 批准号:
EP/X035883/1 - 财政年份:2023
- 资助金额:
$ 36.12万 - 项目类别:
Research Grant
Efficient Computation of Generalized Persistence Diagrams
广义持久图的高效计算
- 批准号:
2324632 - 财政年份:2023
- 资助金额:
$ 36.12万 - 项目类别:
Continuing Grant
Collaborative Research: New Phase Diagrams for Predictive Solvothermal Synthesis in Non-Aqueous Solvents
合作研究:非水溶剂中预测溶剂热合成的新相图
- 批准号:
2240281 - 财政年份:2023
- 资助金额:
$ 36.12万 - 项目类别:
Continuing Grant
Collaborative Research: New Phase Diagrams for Predictive Solvothermal Synthesis in Non-Aqueous Solvents
合作研究:非水溶剂中预测溶剂热合成的新相图
- 批准号:
2240282 - 财政年份:2023
- 资助金额:
$ 36.12万 - 项目类别:
Continuing Grant
Studies of five-dimensional supersymmetric gauge theories from web diagrams which characterize Calabi-Yau spaces
从表征 Calabi-Yau 空间的网络图研究五维超对称规范理论
- 批准号:
23K03396 - 财政年份:2023
- 资助金额:
$ 36.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation of magnetic field phase diagrams and magnetic field synthesis processes of binary alloy systems containing many types and multiple magnetic phases
多类型、多磁相二元合金体系磁场相图及磁场合成过程研究
- 批准号:
23H01714 - 财政年份:2023
- 资助金额:
$ 36.12万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Visualization of Qualities and Abilities in Art Education for Children Aged 0-6 Years -Construction of Curriculum Diagrams for Enrollment-
0-6岁儿童艺术教育素质能力可视化-招生课程图构建-
- 批准号:
23K02309 - 财政年份:2023
- 资助金额:
$ 36.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Time-Temperature Transformation Phase Diagrams for Developing Advanced Glass Ceramic Nuclear Waste-forms
开发先进玻璃陶瓷核废料形式的时间-温度转变相图
- 批准号:
2889462 - 财政年份:2023
- 资助金额:
$ 36.12万 - 项目类别:
Studentship
Semantic study of the phenomenon where explanations with diagrams drive inference in particular directions
对图表解释推动特定方向推理的现象进行语义研究
- 批准号:
23K00041 - 财政年份:2023
- 资助金额:
$ 36.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of Defect Phase Diagrams for Ordered Laves Phases
创建有序 Laves 相的缺陷相图
- 批准号:
576837-2022 - 财政年份:2022
- 资助金额:
$ 36.12万 - 项目类别:
Alliance Grants