Heegaard diagrams and holomorphic disks

Heegaard 图和全纯盘

基本信息

  • 批准号:
    1258274
  • 负责人:
  • 金额:
    $ 42.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

In recent work with Zoltan Szabo, the principal investigator constructed invariants for three- and four-dimensional spaces, called Heegaard Floer homology. In further joint work with Robert Lipshitz and Dylan Thurston, these invariants are extended down, to define bordered Floer homology. Bordered Floer homology gives invariants for two-dimensional surfaces and three-dimensional spaces with two-dimensional boundary. These bordered invariants shed light on Heegaard Floer homology in its original setting. In particular, they can be used to give conceptual calculations of certain Heegaard Floer invariants for closed manifolds. The project aims to understands the invariants better, extending the "bordered theory" to a broader context.The introduction of equations with origins in mathematical physics has lead to great advances in our understanding of the topological properties of three and four-dimensional spaces over the past twenty-five years. Further progress in this area is facilitated by an alternative, more geometric understanding of the data derived from these equations, known as "Heegaard Floer homology", developed by the investigator in collaboration with Zoltan Szabo. This three and four-dimensional story can be extended to cover two-dimensional objects, as well, in a a new theory, "bordered Floer homology", developed by the investigator in collaboration with Robert Lipshitz and Dylan Thurston. The proposal aims to further develop both of these tools and apply them to study topological questions.
在最近与佐尔坦·萨博(Zoltan Szabo)的工作中,首席研究员构建了三维和四维空间的不变量,称为Heegaard Floer同调。在与Robert Lipshitz和Dylan Thurston的进一步联合工作中,这些不变量被向下扩展,以定义有界Floer同调。加边Floer同调给出了二维曲面和具有二维边界的三维空间的不变量。 这些边界不变量揭示了Heegaard Floer同源性在其原始设置。 特别是,它们可以用来给封闭流形的某些Heegaard Floer不变量的概念计算。该项目旨在更好地理解不变量,将“边界理论”扩展到更广泛的背景。在过去的25年里,数学物理中的方程的引入使我们对三维和四维空间的拓扑性质的理解取得了巨大的进步。在这一领域的进一步进展是促进了一个替代的,更多的几何理解的数据来自这些方程,被称为“Heegaard Floer同源性”,由调查员与佐尔坦Szabo合作开发。这个三维和四维的故事可以扩展到涵盖二维物体,以及,在一个新的理论,“边界弗洛尔同源”,由研究人员与罗伯特Lipshitz和迪伦瑟斯顿合作开发。该提案旨在进一步发展这两种工具,并将其应用于研究拓扑问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Ozsvath其他文献

Peter Ozsvath的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Ozsvath', 18)}}的其他基金

Heegaard Diagrams and Holomorphic Disks
Heegaard 图和全纯圆盘
  • 批准号:
    2104536
  • 财政年份:
    2021
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Continuing Grant
Heegaard Diagrams and Holomorphic Disks
Heegaard 图和全纯圆盘
  • 批准号:
    1708284
  • 财政年份:
    2017
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Continuing Grant
RTG: Geometry and Topology at Princeton
RTG:普林斯顿大学的几何和拓扑
  • 批准号:
    1502424
  • 财政年份:
    2015
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Continuing Grant
Contact structures and Floer homology on 3-manifolds with boundary
带边界的 3 流形上的接触结构和 Floer 同源性
  • 批准号:
    1506157
  • 财政年份:
    2015
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Standard Grant
Heegaard diagrams and holomorphic disks
Heegaard 图和全纯盘
  • 批准号:
    1405114
  • 财政年份:
    2014
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Continuing Grant
Heegaard diagrams and holomorphic disks
Heegaard 图和全纯盘
  • 批准号:
    1105810
  • 财政年份:
    2011
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Continuing Grant
Heegaard Diagrams and Holomorphic Disks
Heegaard 图和全纯圆盘
  • 批准号:
    0804121
  • 财政年份:
    2008
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Continuing Grant
Heegaard Diagrams and Holomorphic Disks
Heegaard 图和全纯圆盘
  • 批准号:
    0505811
  • 财政年份:
    2005
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Continuing Grant
Holomorphic Disks and Low-Dimensional Topology
全纯盘和低维拓扑
  • 批准号:
    0234311
  • 财政年份:
    2002
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Standard Grant
Seiberg-Witten Invariants in Dimension three and four
第三维和第四维的 Seiberg-Witten 不变量
  • 批准号:
    9971950
  • 财政年份:
    1999
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Continuing Grant

相似海外基金

Efficient Computation of Generalized Persistence Diagrams
广义持久图的高效计算
  • 批准号:
    2324632
  • 财政年份:
    2023
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Continuing Grant
Collaborative Research: New Phase Diagrams for Predictive Solvothermal Synthesis in Non-Aqueous Solvents
合作研究:非水溶剂中预测溶剂热合成的新相图
  • 批准号:
    2240281
  • 财政年份:
    2023
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Continuing Grant
Collaborative Research: New Phase Diagrams for Predictive Solvothermal Synthesis in Non-Aqueous Solvents
合作研究:非水溶剂中预测溶剂热合成的新相图
  • 批准号:
    2240282
  • 财政年份:
    2023
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Continuing Grant
Optimal Grain Diagrams: Mathematical Analysis and Algorithms
最佳晶粒图:数学分析和算法
  • 批准号:
    EP/X035883/1
  • 财政年份:
    2023
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Research Grant
Studies of five-dimensional supersymmetric gauge theories from web diagrams which characterize Calabi-Yau spaces
从表征 Calabi-Yau 空间的网络图研究五维超对称规范理论
  • 批准号:
    23K03396
  • 财政年份:
    2023
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation of magnetic field phase diagrams and magnetic field synthesis processes of binary alloy systems containing many types and multiple magnetic phases
多类型、多磁相二元合金体系磁场相图及磁场合成过程研究
  • 批准号:
    23H01714
  • 财政年份:
    2023
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Visualization of Qualities and Abilities in Art Education for Children Aged 0-6 Years -Construction of Curriculum Diagrams for Enrollment-
0-6岁儿童艺术教育素质能力可视化-招生课程图构建-
  • 批准号:
    23K02309
  • 财政年份:
    2023
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Time-Temperature Transformation Phase Diagrams for Developing Advanced Glass Ceramic Nuclear Waste-forms
开发先进玻璃陶瓷核废料形式的时间-温度转变相图
  • 批准号:
    2889462
  • 财政年份:
    2023
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Studentship
Semantic study of the phenomenon where explanations with diagrams drive inference in particular directions
对图表解释推动特定方向推理的现象进行语义研究
  • 批准号:
    23K00041
  • 财政年份:
    2023
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of Defect Phase Diagrams for Ordered Laves Phases
创建有序 Laves 相的缺陷相图
  • 批准号:
    576837-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了