Aggregation of Probabilistic Opinions
概率意见的汇总
基本信息
- 批准号:0241434
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-03-15 至 2007-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal focuses on the aggregation process used by individual Decision-Makers (DMs) to combine probabilistic information from multiple, non-independent sources. Typical examples are investors who combine forecasts from various financial advisors regarding the chances of certain stocks to appreciate in value, and patients who must aggregate information from various experts about the chances of success of a given medical procedure.A model is described that assumes that (a) the DM combines information by averaging the various forecasts, and (b) the DM's confidence in the aggregate is inversely related to the variance of the (possibly weighted) mean forecast. This model is used to derive a series of predictions about the factors that affect and drive the DM's confidence. They will be tested in a series of experiments that would clarify (a) the nature of the aggregation rules used by DMs, (b) the factors that affect the DMs' confidence in the final aggregate, (c) the nature and level of dependence between the aggregates and the confidence they inspire, and (d) the factors that determine the DM's preference for certain advisors.In addition to contributing to our understanding of the basic psychological process involved in aggregating opinions, the results have immediate implications for several questions of considerable practical interest that arise in many fields including, but not restricted to, financial, military and medical decision-making. The results will provide (at least partial) guidelines for approaching questions such as:(a) What kind of, and how many, advisors should a DM consult to achieve a desired level of confidence?(b) What factors make some advisors more or less attractive in certain types of decision problems?(c) What are the sources of the surprisingly high correlation among advisors? What is the relative importance of the various factors and how can one use this information to choose advisors in an optimal fashion?
该建议的重点是聚合过程中使用的个人决策者(DM)的联合收割机的概率信息从多个,非独立的来源。 典型的例子是投资者谁联合收割机预测从各种财务顾问有关的机会,某些股票升值,和病人谁必须汇总信息从各种专家的机会,成功的一个给定的医疗程序。一个模型被描述,假设(a)DM结合信息平均的各种预测,以及(B)DM对总体的信心与(可能加权的)平均预测的方差成反比。 该模型用于得出一系列关于影响和驱动DM信心的因素的预测。 将通过一系列实验对这些数据进行检验,这些实验将澄清(a)模式制造商使用的汇总规则的性质,(B)影响模式制造商对最终汇总的信心的因素,(c)汇总与它们所激发的信心之间的依赖性质和程度,以及(d)决定DM对某些顾问的偏好的因素。除了有助于我们理解聚合中涉及的基本心理过程之外,根据这些意见,这些结果对许多领域中出现的具有相当实际意义的几个问题有直接影响,这些领域包括但不限于金融、军事和医疗决策。 结果将提供(至少部分)的指导方针,处理问题,如:(一)什么样的,有多少,顾问DM应该咨询,以达到预期的信心水平?(b)在某些类型的决策问题中,是什么因素使一些顾问或多或少地具有吸引力?(c)顾问之间惊人的高度相关性的来源是什么?各种因素的相对重要性是什么?如何使用这些信息以最佳方式选择顾问?
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Budescu其他文献
Does probability weighting matter in probability elicitation?
- DOI:
10.1016/j.jmp.2011.04.002 - 发表时间:
2011-08-01 - 期刊:
- 影响因子:
- 作者:
David Budescu;Ali Abbas;Lijuan Wu - 通讯作者:
Lijuan Wu
David Budescu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Budescu', 18)}}的其他基金
DDRIG in DRMS: Measuring Persuasion Without Measuring a Prior Belief: A New Application of Planned Missing Data Techniques
DRMS 中的 DDRIG:在不衡量先验信念的情况下衡量说服力:计划丢失数据技术的新应用
- 批准号:
2242100 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Doctoral Dissertation Research in DRMS: Developing and Validating a Method of Coherence-Based Judgment Aggregation
DRMS 博士论文研究:开发和验证基于一致性的判断聚合方法
- 批准号:
1919055 - 财政年份:2019
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Doctoral Dissertation Research in DRMS: The coupled impact of conflict and imprecision of multiple forecasts
DRMS 博士论文研究:冲突和多重预测不精确的耦合影响
- 批准号:
1459150 - 财政年份:2015
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Communication of uncertainty in the IPCC: A comparative international study
IPCC 中的不确定性沟通:一项比较国际研究
- 批准号:
1125879 - 财政年份:2011
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: Basic and Applied Research Leading to a Linguistic Probability Translator (LPT)
合作研究:基础和应用研究导致语言概率翻译器(LPT)
- 批准号:
9975360 - 财政年份:1999
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Collabortive Research: Understanding, Improving and Combining Subjective Judgements
协作研究:理解、改进和结合主观判断
- 批准号:
9632448 - 财政年份:1996
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
相似海外基金
New approaches to training deep probabilistic models
训练深度概率模型的新方法
- 批准号:
2613115 - 财政年份:2025
- 资助金额:
$ 22.5万 - 项目类别:
Studentship
Probabilistic Inference Based Utility Evaluation and Path Generation for Active Autonomous Exploration of USVs in Unknown Confined Marine Environments
基于概率推理的效用评估和路径生成,用于未知受限海洋环境中 USV 主动自主探索
- 批准号:
EP/Y000862/1 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Research Grant
ProbAI: A Hub for the Mathematical and Computational Foundations of Probabilistic AI
ProbAI:概率人工智能的数学和计算基础中心
- 批准号:
EP/Y028783/1 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Research Grant
Towards the next generation probabilistic flood forecasting system for the UK
英国下一代概率洪水预报系统
- 批准号:
2907694 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Studentship
Understanding conscious and unconscious learning of probabilistic information
理解概率信息的有意识和无意识学习
- 批准号:
24K16877 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Probabilistic arrival time prediction algorithm using a-priori knowledge and machine learning to enable sustainable air traffic management
使用先验知识和机器学习的概率到达时间预测算法,以实现可持续的空中交通管理
- 批准号:
24K07723 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
- 批准号:
2311295 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
CAREER: Set-Systems: Probabilistic, Geometric and Extremal Perspectives
职业:集合系统:概率、几何和极值观点
- 批准号:
2237138 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
RAPID/Collaborative Research: Advancing Probabilistic Fault Displacement Hazard Assessments by Collecting Perishable Data from the 2023 Turkiye Earthquake Sequence
RAPID/合作研究:通过收集 2023 年土耳其地震序列的易腐烂数据推进概率断层位移危险评估
- 批准号:
2330152 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Probabilistic models of zeta-functions and applications to number theory
Zeta 函数的概率模型及其在数论中的应用
- 批准号:
22KJ2747 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows