Variational Methods in Hamiltonian Mechanics
哈密顿力学中的变分方法
基本信息
- 批准号:0245336
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-01 至 2007-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: John N. Mather, Princeton UniversityDMS-0245336AbstractThe aim of this project is to construct orbits of Hamiltonian systems by variational methods. The focus is on questions related to Arnold diffusion. For small perturbations of strictly convex integrable systems in 2 or 3 degrees of freedom, Mather has recently succeeded in proving a strong form of Arnold diffusion. For perturbations in a cusp residual set, there are orbits whose action varies in a fairly arbitrary prescribed way. A major goal of this project will be to generalize these results to small perturbations of strictly convex systems in 3 degrees of freedom.This project deals with fundamental mathematical questions that arise in various physical application, e.g. the containment of a plasma in a tokomak (for the production of energy through nuclear fusion) and the question of the stability of orbits in planetary systems. In each case, it has to do with whether certain orbits of dynamical systems wander. In the case of the tokomak, the mathematical questions is related to the physical question of whether the hydrogen atoms in the plasma collide with the walls of the container; in the case of the solar system it is related to the question of whether the planets remain orbiting the sun for all time, or whether the mutual gravitational attraction of the planets could cause one of the planets to wander away from the sun over a very long period of time. It needs to be pointed out, however, that this project deals with a fundamental mathematical problem that originated in the study of physical problems of this sort; it does not address these problems directly.
PI: John N. Mather,普林斯顿大学dms -0245336摘要本项目的目的是用变分方法构造哈密顿系统的轨道。重点是与阿诺德扩散有关的问题。对于2或3自由度的严格凸可积系统的小扰动,Mather最近成功地证明了Arnold扩散的一种强形式。对于尖点残差集中的扰动,存在其作用以相当任意规定的方式变化的轨道。这个项目的主要目标是将这些结果推广到3个自由度的严格凸系统的小扰动。本项目涉及各种物理应用中出现的基本数学问题,例如托科马克中等离子体的密封(用于通过核聚变产生能量)和行星系统轨道的稳定性问题。在每种情况下,它都与动力系统的某些轨道是否漂移有关。在托科马克的情况下,数学问题与等离子体中的氢原子是否与容器壁碰撞的物理问题有关;就太阳系而言,它关系到行星是否始终围绕太阳运行,或者行星之间的相互引力是否会导致其中一颗行星在很长一段时间内偏离太阳。然而,需要指出的是,这个项目处理的是一个基本的数学问题,它起源于对这类物理问题的研究;它并没有直接解决这些问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Mather其他文献
The discovery of the accelerating expansion of the Universe is a milestone for cosmology, as significant as the discovery of the minute temperature variations in the Cosmic Microwave Background (CMB) radiation with the COBE satellite (Nobel Prize
宇宙加速膨胀的发现是宇宙学的一个里程碑,与 COBE 卫星发现宇宙微波背景 (CMB) 辐射中的微小温度变化一样重要(诺贝尔奖)
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
John Mather - 通讯作者:
John Mather
Joseph Lucas and the term "hydrogeology"
- DOI:
10.1007/s100400100145 - 发表时间:
2001-08-01 - 期刊:
- 影响因子:2.300
- 作者:
John Mather - 通讯作者:
John Mather
John Mather的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Mather', 18)}}的其他基金
Mathematical Sciences: Dynamics of Hamiltonian Systems
数学科学:哈密顿系统动力学
- 批准号:
9401740 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Continuing Grant
Equipment For Cartography and Climatology Classes
制图和气候学课程设备
- 批准号:
7814644 - 财政年份:1978
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Effective Hamiltonian Downfolding Methods for Studying Linear and Nonlinear Responses of Quantum Materials
职业:研究量子材料线性和非线性响应的有效哈密顿向下折叠方法
- 批准号:
2338704 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Hamiltonian Methods for Dispersive Fluids and Plasmas
色散流体和等离子体的哈密顿方法
- 批准号:
2154162 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Dynamical and Computer-Assisted Methods Applied to Hamiltonian Systems
应用于哈密顿系统的动力学和计算机辅助方法
- 批准号:
2138090 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Fellowship Award
Robust quasi-Hamiltonian Monte Carlo Methods
鲁棒准哈密顿蒙特卡罗方法
- 批准号:
20H04149 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Dynamical Systems Methods for Fluid Mechanics and Hamiltonian Mechanics
流体力学和哈密顿力学的动力系统方法
- 批准号:
1813384 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Dynamical and Statistical Methods Applied to Hamiltonian Systems
应用于哈密顿系统的动力学和统计方法
- 批准号:
1814543 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
MORSE - Theoretical methods in Hamiltonian dynamics
莫尔斯 - 哈密顿动力学的理论方法
- 批准号:
380257369 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Hamiltonian Methods in Oceanography
海洋学中的哈密顿方法
- 批准号:
495811-2016 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Spectral and spectral collocation methods for Hamiltonian systems
哈密顿系统的谱和谱搭配方法
- 批准号:
1115530 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
A study on the non-equilibrium statistical mechanics of particle methods based on Hamiltonian mechanics
基于哈密顿力学的粒子法非平衡统计力学研究
- 批准号:
23540166 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)