NIRT: Tough Nanocomposite Coatings using New Self-Organized Carbon Forms

NIRT:使用新型自组织碳形式的坚韧纳米复合涂层

基本信息

  • 批准号:
    0304246
  • 负责人:
  • 金额:
    $ 150万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-09-15 至 2008-08-31
  • 项目状态:
    已结题

项目摘要

Tough Nanocomposite Coatings using New Self-Organized Carbon Forms W. A. Curtin, B. W. Sheldon, R. Hurt, and G. CrawfordDivision of Engineering, Brown University, Providence, RI 02912Y.-T. ChengGeneral Motors Research and Development, Warren, MIABSTRACTThe advent of high modulus and strength carbon nanotubes (CNT) has sparked tremendous interest in nanotube-based materials and related new forms of carbon. We propose to develop novel carbon-nanofiber-reinforced ceramics and metals as tough, damage-tolerant coatings for contact and wear applications to replace traditional hard coatings. Nanocomposites containing new engineered carbon nanofibers will be fabricated, evaluated, and optimized to trigger nanoscale toughening. We propose to (i) synthesize a set of wholly new nanocomposite materials using discotic self-assembly routes unique to Brown, and CVD methods to control the structure/properties of the nanofibrous reinforcements and resulting nanocomposites, (ii) demonstrate toughness and damage tolerance in these composite systems, (iii) elucidate toughening mechanisms in these nanocomposites, (iv) investigate a range of fabrication routes for these materials, and (v) evaluate the new materials under realistic wear conditions for aluminum and steel alloys used in automotive components and machining. We focus on carbon-based reinforcements in nanocomposite coatings due to our recent observations of toughening mechanisms in CNT/ceramic composites and because of the myriad ways in which we can produce and control carbon structures to engineer anisotropic properties. Because conventional CNTs may not be necessary to achieve nanoscale toughening, we will develop composites containing an entirely new classes of nanoscale carbon fiberous bodies synthesized by surface-mediated, low-temperature assembly of low-cost polyaromatic mesogenic precursors, which allows molecular engineering of anisotropy in properties, and of the surfaces that control fiber/matrix bonding. The overall synthesis of carbon/ceramic nanocomposites will involve our novel directed polyaromatic assembly and several deposition approaches for forming fiberous carbon materials in nanochannel alumina array templates so as to generate an array of nanoceramic composites with varying fiberous structure (nanotubes, solid graphitic fibrils, "open" structure fibrils and tubes), fiberous dimensions, interfacial adhesion, residual stresses, anisotropic thermal/elastic/strength properties, friction coefficients, and geometric order. Fabrication of nanometal-matrix composites will be performed by metal deposition into free-standing fiberous structures formed via CVD or via etching of the template ceramic matrix. Focused mechanical testing will measure toughness and damage resistance, and analysis will determine the toughening mechanisms and identify how structural/chemical details at multiple scales control enhanced toughness and wear performance. The PIs are dedicated to enhancing the impact of the technical work through integration of research and education, industrial outreach, and human resource development. The project will enhance the infrastructure for science and education by training graduate students, by establishing a summer internship program targeted at under-represented groups, by integrating innovative research activities into the curriculum, and by providing opportunities for graduate students to work at GM R&D. We will cooperate with local chapters of the Women in Science and Engineering, National Society for Black Engineers, and New Scientist Program to broadly disseminate the science and application of nanotechnology and to recruit active researchers. We will integrate nanotechnology concepts into existing NSF MRSEC programs and our entrepreneurship program.
使用新的自组织碳形式的坚韧纳米复合涂层。A.科廷,B。W.谢尔顿,R. Hurt和G.布朗大学克劳福德工程系,地址:普罗维登斯,RI 02912 Y。T.摘要高模量和高强度碳纳米管(CNT)的出现引发了人们对纳米管基材料和相关碳新形式的极大兴趣。 我们建议开发新型的碳纤维增强陶瓷和金属作为接触和磨损应用的坚韧,耐损伤涂层,以取代传统的硬质涂层。 含有新工程碳纳米纤维的纳米复合材料将被制造、评估和优化,以触发纳米级增韧。 我们建议(i)使用Brown独特的分散自组装路线和CVD方法合成一组全新的纳米复合材料,以控制纳米纤维增强体和所得纳米复合材料的结构/性能,(ii)证明这些复合材料系统的韧性和损伤容限,(iii)阐明这些纳米复合材料的增韧机制,(iv)研究这些材料的一系列制造路线,和(v)在用于汽车部件和机械加工的铝和钢合金的实际磨损条件下评价新材料。 我们专注于纳米复合材料涂层中的碳基增强材料,这是由于我们最近对CNT/陶瓷复合材料中增韧机制的观察,以及我们可以生产和控制碳结构以设计各向异性性能的无数方法。 由于传统的碳纳米管可能不需要实现纳米级增韧,我们将开发复合材料,其中包含一个全新的类的纳米级碳纤维体合成的表面介导的,低温组装的低成本聚芳族介晶前体,这使得分子工程的各向异性的性能,和控制纤维/基体结合的表面。 碳/陶瓷纳米复合材料的整体合成将涉及我们新的定向聚芳组装和几种在纳米通道氧化铝阵列模板中形成纤维状碳材料的沉积方法,从而生成具有不同纤维状结构的纳米陶瓷复合材料阵列(纳米管,固体石墨原纤维,“开放”结构原纤维和管),纤维尺寸,界面粘合,残余应力,各向异性的热/弹性/强度特性、摩擦系数和几何顺序。 纳米复合材料的制造将通过金属沉积到通过CVD或通过蚀刻模板陶瓷基质形成的独立纤维状结构中来进行。 重点机械测试将测量韧性和抗损伤性,分析将确定增韧机制,并确定多尺度的结构/化学细节如何控制增强的韧性和耐磨性能。PI致力于通过整合研究和教育,工业推广和人力资源开发来增强技术工作的影响。 该项目将通过培训研究生、建立针对代表性不足群体的暑期实习计划、将创新研究活动纳入课程、为研究生提供在通用汽车研发部门工作的机会,来加强科学和教育的基础设施。 我们将与科学和工程领域的妇女、全国黑人工程师协会和新科学家计划的地方分会合作,广泛传播纳米技术的科学和应用,并招募活跃的研究人员。 我们将纳米技术的概念整合到现有的NSF MRSEC计划和我们的创业计划。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Sheldon其他文献

Cognitive-Behavioural Therapy
认知行为疗法
  • DOI:
    10.4324/9780203833711
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Brian Sheldon
  • 通讯作者:
    Brian Sheldon

Brian Sheldon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian Sheldon', 18)}}的其他基金

GOALI: Chemomechanical Failure Mechanisms in Inorganic Solid Electrolytes
目标:无机固体电解质的化学机械失效机制
  • 批准号:
    2124775
  • 财政年份:
    2021
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
GOALI - Collaborative Research: Chemically Induced Stresses and Degradation Mechanisms in Ceramic Materials for Li Ion Batteries
GOALI - 合作研究:锂离子电池陶瓷材料的化学诱导应力和降解机制
  • 批准号:
    1832829
  • 财政年份:
    2018
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
GOALI - Collaborative Research: The Impact of Chemically Induced Stresses on Kinetic Processes and Degradation Mechanisms in Non-Stoichiometric Oxides
GOALI - 合作研究:化学诱导应力对非化学计量氧化物的动力学过程和降解机制的影响
  • 批准号:
    1410946
  • 财政年份:
    2014
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
GOALI: Stress Evolution and Related Phenomena in Composite Electrodes for Li Ion Batteries
GOALI:锂离子电池复合电极的应力演变及相关现象
  • 批准号:
    1000822
  • 财政年份:
    2010
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Grain Boundary Induced Stresses in Nanocrystalline Ceramic Coatings and Thin Films
纳米晶陶瓷涂层和薄膜中的晶界诱发应力
  • 批准号:
    0805172
  • 财政年份:
    2008
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
2006 Gordon Research Conference on High Temperature Materials, Processes, and Diagnostics; Waterville, ME; July 16-21, 2005
2006 年戈登高温材料、工艺和诊断研究会议;
  • 批准号:
    0608121
  • 财政年份:
    2006
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Controlling Stress Evolution in Ceramic Thin Films and Coatings: Investigations of Mechanical and Chemical Responses
控制陶瓷薄膜和涂层中的应力演变:机械和化学响应的研究
  • 批准号:
    0305418
  • 财政年份:
    2003
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
Control of Intrinsic Stresses in Ceramic Thin Films and Coatings Produced by Chemical Vapor Deposition
化学气相沉积陶瓷薄膜和涂层内应力的控制
  • 批准号:
    0075207
  • 财政年份:
    2000
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
Intrinsic Stress and Grain Alignment in Diamond Films
金刚石薄膜中的固有应力和晶粒排列
  • 批准号:
    9619520
  • 财政年份:
    1997
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant

相似国自然基金

拟南芥孢子体特异表达的TOUGH基因调控配子体发育的分子机理研究
  • 批准号:
    32170350
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
miRNA生物合成因子TOUGH调控拟南芥核糖体生物合成和rRNA前体转录后加工的机制研究
  • 批准号:
    31900932
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于TOUGH2与大气扩散耦合模式的低渗透油田CO2注气区域大气环境影响分析方法研究
  • 批准号:
    41373088
  • 批准年份:
    2013
  • 资助金额:
    95.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
  • 批准号:
    2339197
  • 财政年份:
    2024
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
NSF-SNSF: Crack Path Prediction and Control in Nonlinearly Viscoelastic Materials: in-silico to Experiments with Viscoelastic and Tough Hydrogels
NSF-SNSF:非线性粘弹性材料中的裂纹路径预测和控制:粘弹性和坚韧水凝胶的计算机实验
  • 批准号:
    2403592
  • 财政年份:
    2024
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
CAREER: Tough Architected Concrete Materials: Bio-inspired Design, Manufacturing, and Mechanics
职业:坚韧的建筑混凝土材料:仿生设计、制造和力学
  • 批准号:
    2238992
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
Solar2Wave: Design of Floating Solar Farms to Overcome Tough Ocean Waves
Solar2Wave:克服汹涌海浪的浮动太阳能发电场设计
  • 批准号:
    10048187
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Feasibility Studies
Mechanistic Design and Understanding of Fully Polymeric Antifreezing and Tough Hydrogels
全聚合防冻剂和坚韧水凝胶的机理设计和理解
  • 批准号:
    2311985
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Biomineral-inspired mechanically tough perovskite solar cells with enhanced stability
受生物矿物启发,机械坚韧的钙钛矿太阳能电池具有增强的稳定性
  • 批准号:
    EP/X012263/1
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Research Grant
Biomineral-inspired mechanically tough perovskite solar cells with enhanced stability
受生物矿物启发,机械坚韧的钙钛矿太阳能电池具有增强的稳定性
  • 批准号:
    EP/X012484/1
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Research Grant
AMCS – Development of a new, lightweight, ultra-tough advanced matrix composite material for EV and LiON battery armour
AMCS — 开发用于电动汽车和锂离子电池装甲的新型、轻质、超坚韧的先进基质复合材料
  • 批准号:
    10082802
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Collaborative R&D
Drawing on Forced Marriage: Teaching Tough Topics Through Comics
借鉴强迫婚姻:通过漫画教授棘手的话题
  • 批准号:
    AH/X004325/1
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Research Grant
Theoretical development of super-ductile, super-tough, and super-strong high entropy ceramics
超韧、超韧、超强高熵陶瓷理论发展
  • 批准号:
    22KF0241
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了