Grain Boundary Induced Stresses in Nanocrystalline Ceramic Coatings and Thin Films

纳米晶陶瓷涂层和薄膜中的晶界诱发应力

基本信息

  • 批准号:
    0805172
  • 负责人:
  • 金额:
    $ 72.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL DESCRIPTION:Internal stresses are a major factor in the performance and failure of thin films and coatings that are used for a wide range of applications, including microelectronic devices, protective coatings for aerospace and energy systems, microelectromechanical systems (MEMS), chemical sensors, and fuel cells. Recent research at Brown University has discovered new methods for controlling these stresses in nanocrystalline ceramics, where the small grain sizes lead directly to an extremely large number of interfaces between neighboring crystals (i.e., grain boundaries). Small changes in the atomic bonding at these grain boundaries can produce large stresses in nanograined films and coatings (in contrast, the same processes produce insignificant stresses in conventional large grained materials where there are far fewer grain boundaries). This research explores new methods of controlling these stresses in several different, technologically important materials. Work on nanocrystalline diamond (NCD) includes a substantial collaboration with scientists at General Motors who are interested in low friction coatings for dry machining. This project also includes collaborations with several groups making MEMS devices, where stress management is crucial. Another focus is oxide ceramics where grain boundary induced stresses are related to key electrochemical properties. In addition to supporting students at Brown University, this research employs undergraduates from Trinity College (in conjunction with co-PI Walden, a Trinity faculty member). Educational efforts at Brown include an annual program for graduate students which foster research and mentoring skills and a state-accredited professional development workshop for K-12 teachers.TECHNICAL DETAILS:Nanocrystalline films and coatings of various materials are candidates for a wide range of emerging applications. The ceramics chosen for study in this project include nanocrystalline diamond (NCD) films which General Motors hopes to employ for dry machining of Al alloys, and several oxides. Relationships between grain boundary structure and residual stresses in these films are not well established, and this research is expected to lead to grain boundary engineering strategies that will significantly advance the application of these materials. In NCD, the grain boundary induced stresses are relatively large, and can thus be manipulated to have a significant impact on the total stress state of the material. Here, reactions with hydrogen appear to be particularly important, and other chemical effects are also being investigated. In oxide ceramics, the grain boundary induced stresses are generally smaller. However, modest changes in the composition of these films can induce stresses that are related to important electrochemical phenomena (e.g., ionic and electronic conductivity in solid oxide fuel cell electrolytes). Thus, precise stress measurements provide information about grain boundary phenomena, which are directly related to key electrochemical properties of these materials. These stress studies provide valuable information that compliments data obtained with other, more established techniques such as impedance spectroscopy. The students conducting the research on grain boundary induced stresses in these different materials are being actively trained in a variety of different experimental and modeling techniques. The efforts on NCD include film fabrication by plasma chemical vapor deposition, detailed film characterization with electron microscopy and Raman spectroscopy, and modeling with both continuum finite element and atomistic methods. The work on oxides includes film fabrication by metal organic chemical vapor deposition, sol gel synthesis, electron microscopy, and detailed electrochemical modeling.
非技术描述:内应力是薄膜和涂层性能和失效的主要因素,薄膜和涂层的应用范围广泛,包括微电子器件、航空航天和能源系统的保护涂层、微机电系统 (MEMS)、化学传感器和燃料电池。 布朗大学最近的研究发现了控制纳米晶陶瓷中这些应力的新方法,其中小晶粒尺寸直接导致相邻晶体之间出现大量界面(即晶界)。 这些晶界处原子键的微小变化可以在纳米晶粒薄膜和涂层中产生很大的应力(相比之下,相同的过程在晶界少得多的传统大晶粒材料中产生微不足道的应力)。 这项研究探索了在几种不同的、技术上重要的材料中控制这些应力的新方法。 纳米晶金刚石 (NCD) 方面的工作包括与通用汽车公司的科学家进行实质性合作,他们对干式加工的低摩擦涂层感兴趣。 该项目还包括与多个制造 MEMS 设备的团队合作,其中压力管理至关重要。 另一个焦点是氧化物陶瓷,其中晶界引起的应力与关键电化学性能相关。 除了支持布朗大学的学生外,这项研究还雇用了三一学院的本科生(与联合首席研究员、三一学院教员瓦尔登一起)。 布朗大学的教育工作包括针对研究生的年度计划,以培养研究和指导技能,以及为 K-12 教师举办国家认可的专业发展研讨会。技术细节:纳米晶薄膜和各种材料的涂层是各种新兴应用的候选者。 该项目选择研究的陶瓷包括纳米晶金刚石 (NCD) 薄膜,通用汽车希望将其用于铝合金和多种氧化物的干式加工。 这些薄膜中的晶界结构和残余应力之间的关系尚未得到很好的建立,这项研究预计将带来晶界工程策略,从而显着推进这些材料的应用。 在 NCD 中,晶界引起的应力相对较大,因此可以对其进行控制以对材料的总应力状态产生重大影响。 在这里,与氢的反应似乎特别重要,其他化学效应也在研究中。 在氧化物陶瓷中,晶界引起的应力通常较小。 然而,这些薄膜成分的适度变化可能会引起与重要电化学现象(例如固体氧化物燃料电池电解质中的离子和电子电导率)相关的应力。因此,精确的应力测量提供了有关晶界现象的信息,这与这些材料的关键电化学性能直接相关。 这些应力研究提供了有价值的信息,补充了通过其他更成熟的技术(例如阻抗谱)获得的数据。 对这些不同材料中晶界引起的应力进行研究的学生正在接受各种不同实验和建模技术的积极培训。 NCD 方面的工作包括通过等离子体化学气相沉积进行薄膜制造、使用电子显微镜和拉曼光谱进行详细薄膜表征以及使用连续有限元和原子方法进行建模。 氧化物方面的工作包括通过金属有机化学气相沉积、溶胶凝胶合成、电子显微镜和详细的电化学建模来制造薄膜。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Sheldon其他文献

Cognitive-Behavioural Therapy
认知行为疗法
  • DOI:
    10.4324/9780203833711
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Brian Sheldon
  • 通讯作者:
    Brian Sheldon

Brian Sheldon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian Sheldon', 18)}}的其他基金

GOALI: Chemomechanical Failure Mechanisms in Inorganic Solid Electrolytes
目标:无机固体电解质的化学机械失效机制
  • 批准号:
    2124775
  • 财政年份:
    2021
  • 资助金额:
    $ 72.8万
  • 项目类别:
    Continuing Grant
GOALI - Collaborative Research: Chemically Induced Stresses and Degradation Mechanisms in Ceramic Materials for Li Ion Batteries
GOALI - 合作研究:锂离子电池陶瓷材料的化学诱导应力和降解机制
  • 批准号:
    1832829
  • 财政年份:
    2018
  • 资助金额:
    $ 72.8万
  • 项目类别:
    Standard Grant
GOALI - Collaborative Research: The Impact of Chemically Induced Stresses on Kinetic Processes and Degradation Mechanisms in Non-Stoichiometric Oxides
GOALI - 合作研究:化学诱导应力对非化学计量氧化物的动力学过程和降解机制的影响
  • 批准号:
    1410946
  • 财政年份:
    2014
  • 资助金额:
    $ 72.8万
  • 项目类别:
    Continuing Grant
GOALI: Stress Evolution and Related Phenomena in Composite Electrodes for Li Ion Batteries
GOALI:锂离子电池复合电极的应力演变及相关现象
  • 批准号:
    1000822
  • 财政年份:
    2010
  • 资助金额:
    $ 72.8万
  • 项目类别:
    Standard Grant
2006 Gordon Research Conference on High Temperature Materials, Processes, and Diagnostics; Waterville, ME; July 16-21, 2005
2006 年戈登高温材料、工艺和诊断研究会议;
  • 批准号:
    0608121
  • 财政年份:
    2006
  • 资助金额:
    $ 72.8万
  • 项目类别:
    Standard Grant
Controlling Stress Evolution in Ceramic Thin Films and Coatings: Investigations of Mechanical and Chemical Responses
控制陶瓷薄膜和涂层中的应力演变:机械和化学响应的研究
  • 批准号:
    0305418
  • 财政年份:
    2003
  • 资助金额:
    $ 72.8万
  • 项目类别:
    Continuing Grant
NIRT: Tough Nanocomposite Coatings using New Self-Organized Carbon Forms
NIRT:使用新型自组织碳形式的坚韧纳米复合涂层
  • 批准号:
    0304246
  • 财政年份:
    2003
  • 资助金额:
    $ 72.8万
  • 项目类别:
    Continuing Grant
Control of Intrinsic Stresses in Ceramic Thin Films and Coatings Produced by Chemical Vapor Deposition
化学气相沉积陶瓷薄膜和涂层内应力的控制
  • 批准号:
    0075207
  • 财政年份:
    2000
  • 资助金额:
    $ 72.8万
  • 项目类别:
    Continuing Grant
Intrinsic Stress and Grain Alignment in Diamond Films
金刚石薄膜中的固有应力和晶粒排列
  • 批准号:
    9619520
  • 财政年份:
    1997
  • 资助金额:
    $ 72.8万
  • 项目类别:
    Continuing Grant

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

Investigation of coastal upwelling induced by western boundary currents
西边界流引起的海岸上升流研究
  • 批准号:
    23H01242
  • 财政年份:
    2023
  • 资助金额:
    $ 72.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Role of Diffusion-Induced Grain Boundary Migration in Alloy Oxidation
扩散引起的晶界迁移在合金氧化中的作用
  • 批准号:
    2236887
  • 财政年份:
    2023
  • 资助金额:
    $ 72.8万
  • 项目类别:
    Standard Grant
Effects of inflow perturbations on the energy transfer and wake vortex dynamics of a 2-DOF cylinder undergoing vortex-induced vibration near a plane boundary in turbulent flows
流入扰动对在湍流中平面边界附近经历涡激振动的 2 自由度圆柱体的能量传递和尾涡动力学的影响
  • 批准号:
    569540-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 72.8万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
CAREER: Characterization and understanding of point defect evolution during corrosion-induced grain boundary migration
职业:腐蚀引起的晶界迁移过程中点缺陷演化的表征和理解
  • 批准号:
    2145455
  • 财政年份:
    2022
  • 资助金额:
    $ 72.8万
  • 项目类别:
    Continuing Grant
Controlling vortex induced vibrations of cylindrical structures placed near a plane boundary
控制平面边界附近圆柱形结构的涡激振动
  • 批准号:
    RGPIN-2016-04079
  • 财政年份:
    2021
  • 资助金额:
    $ 72.8万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Experimental and Numerical Study of Bed Shear Stress and Turbulent Boundary Layer Structure Induced by Breaking-Wave-Generated Vortices
合作研究:破碎波产生涡流引起的床面剪应力和湍流边界层结构的实验和数值研究
  • 批准号:
    2049293
  • 财政年份:
    2021
  • 资助金额:
    $ 72.8万
  • 项目类别:
    Standard Grant
Collaborative Research: Experimental and Numerical Study of Bed Shear Stress and Turbulent Boundary Layer Structure Induced by Breaking-Wave-Generated Vortices
合作研究:破碎波产生涡流引起的床面剪应力和湍流边界层结构的实验和数值研究
  • 批准号:
    2048844
  • 财政年份:
    2021
  • 资助金额:
    $ 72.8万
  • 项目类别:
    Standard Grant
Collaborative Research: Experimental and Numerical Study of Bed Shear Stress and Turbulent Boundary Layer Structure Induced by Breaking-Wave-Generated Vortices
合作研究:破碎波产生涡流引起的床面剪应力和湍流边界层结构的实验和数值研究
  • 批准号:
    2049140
  • 财政年份:
    2021
  • 资助金额:
    $ 72.8万
  • 项目类别:
    Standard Grant
Accurate CFD Modeling of Atmospheric Boundary Layer with an Emphasis on Wind-Induced Response of Buildings
大气边界层的精确 CFD 建模,重点关注建筑物的风致响应
  • 批准号:
    542513-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 72.8万
  • 项目类别:
    Collaborative Research and Development Grants
Controlling vortex induced vibrations of cylindrical structures placed near a plane boundary
控制平面边界附近圆柱形结构的涡激振动
  • 批准号:
    RGPIN-2016-04079
  • 财政年份:
    2020
  • 资助金额:
    $ 72.8万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了