Controlling Stress Evolution in Ceramic Thin Films and Coatings: Investigations of Mechanical and Chemical Responses
控制陶瓷薄膜和涂层中的应力演变:机械和化学响应的研究
基本信息
- 批准号:0305418
- 负责人:
- 金额:$ 56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-06-01 至 2008-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research focuses on controlling intrinsic stresses in several different polycrystalline ceramic films and coatings where residual stresses have an important effect on key materials properties. The intrinsic stresses are produced by the film growth process, and can thus be controlled during processing. While previous work has examined intrinsic stresses in metal films, ceramics have been investigated in far less detail. Four inter-related efforts will lead to a significant increase in both knowledge and our ability to control stress-related effects. First, in MEMS devices, residual stress effects at small length scales are critical. By controlling stress gradients in polycrystalline SiC, we expect to eliminate bending problems in free standing SiC films for MEMS applications. Secondly, non-stoichiometric oxide films are important for a variety of electrochemical applications. Initial work with TiO2-X shows that stresses due to compositional variations can be accurately measured, and that the defect chemistry of the material determines the type of stress changes observed. Additional work on oxides will explore yittria stabilized zirconia and CeO2-X, both of which are used as electrolytes in solid oxide fuel cells. As well, new models of tensile and compressive intrinsic stresses have been developed with previous NSF funding. These will be integrated into a unified model, applicable to a broad range of vapor-deposited polycrystalline films. Finally, the fracture resistance and adhesion of SiC coatings will be measured as a function of residual stresses and stress gradients. Our demonstrated ability to vary the film microstructure and stress independently during deposition will make it possible to isolate the effects of residual stresses. All three investigators are engaged in significant educational activities. Profs. Rankin and Sheldon will continue to promote several different K-12 outreach activities. Prof. Rankin is also the Associate Director of the Sheridan Center for Teaching and Learning at Brown, where she is regularly engaged in advancing the teaching skills of faculty and graduate students from a wide range of different disciplines. During the academic year, Prof. Walden is on the faculty at Trinity College, an undergraduate teaching institution. We will employ Trinity undergraduates in research efforts, providing them with experience in a research setting. This research will provide new knowledge and materials fabrication capabilities for controlling the mechanical stresses that invariably exist in coatings and thin-films of ceramic materials. These stresses can be either detrimental to the materials performance (e.g., by promoting failure) or beneficial (e.g., by improving toughness). Thus, proper control of these stresses is critical. Work is focused on two types of materials, silicon carbide that is of interest in miniature machines (so-called micro-electro-mechanical systems or MEMS), and oxide ceramics that are useful for electrochemical applications such as fuel cells. Much of the knowledge that is obtained from these investigations will also be broadly applicable to thin-films and coatings that are used for a wide variety of other applications, including microelectronic devices, jet engines, and hard coatings that are used to extend the life of different types of machinery.
本研究的重点是控制几种不同的多晶陶瓷薄膜和涂层的残余应力有重要影响的关键材料的性能的内在应力。 内在应力由膜生长过程产生,并且因此可以在处理期间被控制。 虽然以前的工作已经研究了金属薄膜中的内应力,但陶瓷的研究却少得多。 四个相互关联的努力将导致知识和我们控制压力相关影响的能力的显着增加。 首先,在MEMS器件中,小长度尺度下的残余应力效应是关键的。 通过控制多晶SiC中的应力梯度,我们期望消除MEMS应用中独立SiC膜的弯曲问题。 其次,非化学计量的氧化物膜对于各种电化学应用是重要的。 使用TiO 2-X的初步工作表明,可以准确测量由于成分变化引起的应力,并且材料的缺陷化学性质决定了观察到的应力变化类型。 氧化物的其他工作将探索氧化钇稳定的氧化锆和CeO 2-X,这两者都被用作固体氧化物燃料电池的电解质。 此外,拉伸和压缩内应力的新模型已经开发与以前的NSF资金。 这些将被集成到一个统一的模型,适用于广泛的气相沉积多晶薄膜。 最后,SiC涂层的抗断裂性和附着力将被测量为残余应力和应力梯度的函数。 我们所证明的在沉积过程中独立改变薄膜微观结构和应力的能力将使隔离残余应力的影响成为可能。 所有三名调查员都参与了重要的教育活动。 教授兰金和谢尔顿将继续推动几个不同的K-12外展活动。 兰金教授也是布朗大学谢里丹教学中心的副主任,在那里她经常从事提高教师和来自各种不同学科的研究生的教学技能。 在学年期间,瓦尔登教授是Trinity学院,本科教学机构的教师。 我们将聘请Trinity本科生从事研究工作,为他们提供研究环境的经验。 这项研究将提供新的知识和材料制造能力,以控制机械应力,总是存在于涂层和薄膜的陶瓷材料。 这些应力可能对材料性能有害(例如,通过促进失败)或有益(例如,通过提高韧性)。 因此,适当控制这些应力至关重要。 工作集中在两种类型的材料上,碳化硅在微型机器(所谓的微机电系统或MEMS)中很有意义,氧化物陶瓷可用于电化学应用,如燃料电池。 从这些研究中获得的许多知识也将广泛适用于用于各种其他应用的薄膜和涂层,包括微电子设备,喷气发动机和用于延长不同类型机器寿命的硬涂层。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Sheldon其他文献
Cognitive-Behavioural Therapy
认知行为疗法
- DOI:
10.4324/9780203833711 - 发表时间:
2011 - 期刊:
- 影响因子:3.8
- 作者:
Brian Sheldon - 通讯作者:
Brian Sheldon
Brian Sheldon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian Sheldon', 18)}}的其他基金
GOALI: Chemomechanical Failure Mechanisms in Inorganic Solid Electrolytes
目标:无机固体电解质的化学机械失效机制
- 批准号:
2124775 - 财政年份:2021
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
GOALI - Collaborative Research: Chemically Induced Stresses and Degradation Mechanisms in Ceramic Materials for Li Ion Batteries
GOALI - 合作研究:锂离子电池陶瓷材料的化学诱导应力和降解机制
- 批准号:
1832829 - 财政年份:2018
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
GOALI - Collaborative Research: The Impact of Chemically Induced Stresses on Kinetic Processes and Degradation Mechanisms in Non-Stoichiometric Oxides
GOALI - 合作研究:化学诱导应力对非化学计量氧化物的动力学过程和降解机制的影响
- 批准号:
1410946 - 财政年份:2014
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
GOALI: Stress Evolution and Related Phenomena in Composite Electrodes for Li Ion Batteries
GOALI:锂离子电池复合电极的应力演变及相关现象
- 批准号:
1000822 - 财政年份:2010
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
Grain Boundary Induced Stresses in Nanocrystalline Ceramic Coatings and Thin Films
纳米晶陶瓷涂层和薄膜中的晶界诱发应力
- 批准号:
0805172 - 财政年份:2008
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
2006 Gordon Research Conference on High Temperature Materials, Processes, and Diagnostics; Waterville, ME; July 16-21, 2005
2006 年戈登高温材料、工艺和诊断研究会议;
- 批准号:
0608121 - 财政年份:2006
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
NIRT: Tough Nanocomposite Coatings using New Self-Organized Carbon Forms
NIRT:使用新型自组织碳形式的坚韧纳米复合涂层
- 批准号:
0304246 - 财政年份:2003
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
Control of Intrinsic Stresses in Ceramic Thin Films and Coatings Produced by Chemical Vapor Deposition
化学气相沉积陶瓷薄膜和涂层内应力的控制
- 批准号:
0075207 - 财政年份:2000
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
Intrinsic Stress and Grain Alignment in Diamond Films
金刚石薄膜中的固有应力和晶粒排列
- 批准号:
9619520 - 财政年份:1997
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
相似国自然基金
Tmem30a通过ER Stress/NF-κB信号通路调节肠上皮细胞屏障功能稳态介导炎症性肠病的研究
- 批准号:82300629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
二甲双胍抗肥胖新机制:调节小胶质细胞ER stress-EVs缓解下丘脑炎症
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肿瘤相关巨噬细胞通过Stress Granule 形成调控炎症小体促进舌鳞癌转移的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:10.0 万元
- 项目类别:省市级项目
ACSL4/ER stress/GPX4通路在溃疡性结肠炎中对Ferroptosis的调控机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
炎症相关因子 RKIP 通过活化 ER stress 相关的IRE1α/XBP1 信号轴调控肝脏疾病的机制研究
- 批准号:LY22H030007
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
糖尿病心肌病新机制:支链氨基酸(BCAA)代谢障碍通过下调冠脉内皮细胞STIM1抑制mTORC2-Akt1通路和激活ER stress-UPR导致冠脉微血管损伤
- 批准号:82000356
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于ROS-ER stress-Ca2+信号通路研究健脾益肺II号减少COPD气道上皮细胞凋亡的作用机制
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
CAMKIV-MHC Class I-ER Stress途径对骨骼肌炎症及再生的调控及机制研究
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
舌鳞癌细胞通过ER stress传递激活巨噬细胞调控肿瘤转移的机制研究
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
β-arrestin-2通过ER-stress/PUMA调控Beclin1信号在结肠炎中的作用
- 批准号:81800458
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Evolution of a novel trait promoted by mechanical stress
机械应力促进新特性的进化
- 批准号:
23H00385 - 财政年份:2023
- 资助金额:
$ 56万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
NSF Postdoctoral Fellowship in Biology FY 2022: Quantifying the microbiome's contribution to host acclimation and evolution under stress
2022 财年 NSF 生物学博士后奖学金:量化微生物组对应激下宿主适应和进化的贡献
- 批准号:
2208910 - 财政年份:2023
- 资助金额:
$ 56万 - 项目类别:
Fellowship Award
RII Track-4: NSF: Understanding Microstructure Evolution in Stimuli-Responsive Yield-Stress Fluid-Assisted 3D Printing: Linking Microstructures to Macroscale Rheological Properties
RII Track-4:NSF:了解刺激响应屈服应力流体辅助 3D 打印中的微观结构演化:将微观结构与宏观流变特性联系起来
- 批准号:
2229004 - 财政年份:2023
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
Stress, cooperation, and cheating during the evolution of multicellularity
多细胞进化过程中的压力、合作和欺骗
- 批准号:
RGPIN-2022-03996 - 财政年份:2022
- 资助金额:
$ 56万 - 项目类别:
Discovery Grants Program - Individual
BRC-BIO: The evolution of cellular stress responses and host defenses to bacterial pathogens
BRC-BIO:细胞应激反应和宿主对细菌病原体的防御的进化
- 批准号:
2217908 - 财政年份:2022
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
Resolving the Localized Stress Evolution: Toward Long-lasting Rechargeable Batteries
解决局部应力演变:迈向持久耐用的可充电电池
- 批准号:
RGPIN-2019-04660 - 财政年份:2022
- 资助金额:
$ 56万 - 项目类别:
Discovery Grants Program - Individual
RAPID: Evolution of critical shear stress in the seabed of an urbanized estuary and natural estuary after the passage of Hurricane Ian
快速:伊恩飓风过后城市化河口和自然河口海底临界剪应力的演变
- 批准号:
2306741 - 财政年份:2022
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
Defining how chronic oxidative stress drives the evolution of aggressive breast cancers
定义慢性氧化应激如何驱动侵袭性乳腺癌的演变
- 批准号:
476209 - 财政年份:2022
- 资助金额:
$ 56万 - 项目类别:
Studentship Programs
Host-microbe co-evolution in Tropical Eastern Pacific corals as a potential source of resilience to environmental stress
热带东太平洋珊瑚的宿主微生物共同进化是抵御环境压力的潜在来源
- 批准号:
566602-2021 - 财政年份:2022
- 资助金额:
$ 56万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Linking Stress Tolerance to Molecular Evolution of Grass Stomata
将应激耐受性与草气孔的分子进化联系起来
- 批准号:
FT210100366 - 财政年份:2022
- 资助金额:
$ 56万 - 项目类别:
ARC Future Fellowships














{{item.name}}会员




