Topics in Discrete Groups and Geometry

离散群和几何主题

基本信息

  • 批准号:
    0305047
  • 负责人:
  • 金额:
    $ 24.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-06-01 至 2006-02-28
  • 项目状态:
    已结题

项目摘要

ABSTRACTTOPICS IN DISCRETE GROUPS AND GEOMETRYRichard Schwartz plans to continue his research ingeometry and discrete groups.One of his main goals is to explore the connectionsbetween three dimensional real hyperbolic geometryand four dimensional complex hyperbolic geometry.Schwartz observed that certain complex hyperbolicdeformations of the reflection triangle groupslead to complex hyperbolic four-manifolds whoseideal boundaries are real hyperbolic three-manifolds.As the angles in the triangle group change, theideal boundary appears to undergo Dehn surgery.Schwartz also plans to study quotients of the circle,based on patterns of geodesics in the hyperbolicplane which are invariant under the action of asurface group. The idea is to make topological models for the limit sets which couldarise in connection with deformations of surfacegroups into Lie groups and then use the modelsto study actual deformations of surface groups intoLie groups.Broadly speaking, Schwartz' research deals withthe geometry of infinite repeating patterns.A crystal lattice is an example of an infiniterepeating pattern in Euclidean space. Analogouspatterns exist in curved spaces, and oftenthe curvature of the space allows for theexistence of more exotic and geometrically rich patterns.Schwartz is interested in the studying theseexotic patterns when they are generated by a simplemechanism which has a finite description.For example, one can place several mirrors ina curved space and look at the pattern generatedby the images of an object which is reflectedendlessly in the mirrors.The central question is: When does the finitemechanism of generation lead to an infinitediscrete pattern?
离散群和几何理查德·施瓦茨计划继续他在几何和离散群方面的研究。他的主要目标之一是探索三维实双曲几何和四维复双曲几何之间的联系。施瓦茨观察到反射三角形群的某些复双曲变形导致复双曲四流形,其理想边界是实双曲三维流形。随着三角形群中角度的变化,理想边界似乎进行了Dehn手术。Schwartz还计划基于双曲面群作用下不变的双曲平面上的大地平面线图案来研究圆的商。其思想是为与表面群到Lie群的变形有关的极限集建立拓扑模型,然后使用该模型来研究表面群到Lie群的实际变形。从广义上说,Schwartz的研究涉及无限重复图案的几何。晶格是欧氏空间中无限迭代图案的一个例子。类似的图案存在于弯曲的空间中,空间的曲率往往允许存在更奇异的和几何丰富的图案。Schwartz对研究这些奇异图案感兴趣,因为它们是由具有有限描述的简单机构产生的。例如,一个人可以在弯曲的空间中放置几面镜子,并观察由镜子中没有树枝反射的对象的图像生成的图案。中心问题是:生成的有限项机制何时会导致无限离散的图案?

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Schwartz其他文献

A Heart With 67 Stents
  • DOI:
    10.1016/j.jacc.2010.02.077
  • 发表时间:
    2010-11-02
  • 期刊:
  • 影响因子:
  • 作者:
    Rami N. Khouzam;Rajvir Dahiya;Richard Schwartz
  • 通讯作者:
    Richard Schwartz
TCT CONNECT-136 Elevated Baseline B-Type Natriuretic Peptide Predicts Mortality in Transcatheter Aortic Valve Replacement
  • DOI:
    10.1016/j.jacc.2020.09.150
  • 发表时间:
    2020-10-27
  • 期刊:
  • 影响因子:
  • 作者:
    Giorgio Medranda;Basem Alawneh;Khaled Salhab;Richard Schwartz;Stephen Green
  • 通讯作者:
    Stephen Green
Getting more from automatic transcripts for semi-supervised language modeling
  • DOI:
    10.1016/j.csl.2015.08.007
  • 发表时间:
    2016-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Scott Novotney;Richard Schwartz;Sanjeev Khudanpur
  • 通讯作者:
    Sanjeev Khudanpur
DIRECT TRANSCATHETER AORTIC VALVE REPLACEMENT RESULTS IN SIMILAR RATES OF ATHEROEMBOLIC EVENTS
  • DOI:
    10.1016/s0735-1097(20)31887-8
  • 发表时间:
    2020-03-24
  • 期刊:
  • 影响因子:
  • 作者:
    Giorgio Medranda;Kunal Brahmbhatt;Anjili Srivastava;Rafael Hernandez;Khaled Salhab;Richard Schwartz;Stephen Green
  • 通讯作者:
    Stephen Green
EARLY SUCCESS USING TRANSCATHETER MITRAL VALVE REPLACEMENT FOR THE TREATMENT OF DEGENERATED MITRAL BIOPROSTHESIS
  • DOI:
    10.1016/s0735-1097(19)33678-2
  • 发表时间:
    2019-03-12
  • 期刊:
  • 影响因子:
  • 作者:
    Giorgio Medranda;Kunal Brahmbhatt;Richard Schwartz;Stephen Green
  • 通讯作者:
    Stephen Green

Richard Schwartz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Schwartz', 18)}}的其他基金

Geometric optimization and polygonal geometry
几何优化和多边形几何
  • 批准号:
    2102802
  • 财政年份:
    2021
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Continuing Grant
Topics in Geometry and Dynamics
几何和动力学主题
  • 批准号:
    1807320
  • 财政年份:
    2018
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Continuing Grant
Topics in Geometry and Dynamics
几何和动力学主题
  • 批准号:
    1503883
  • 财政年份:
    2015
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Standard Grant
Problems in Geometry and Dynamics
几何和动力学问题
  • 批准号:
    1204471
  • 财政年份:
    2012
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Continuing Grant
Topics in geometry and dynamics
几何和动力学主题
  • 批准号:
    0905751
  • 财政年份:
    2009
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Continuing Grant
Topics in Discrete Groups and Geometry
离散群和几何主题
  • 批准号:
    0604426
  • 财政年份:
    2006
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Continuing Grant
Topics in Discrete Groups and Geometry
离散群和几何主题
  • 批准号:
    0603983
  • 财政年份:
    2005
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Continuing Grant
Topics in Projective and Hyperbolic Geometry
射影和双曲几何主题
  • 批准号:
    0072607
  • 财政年份:
    2000
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Continuing Grant
Geometry and Dynamics
几何与动力学
  • 批准号:
    9803526
  • 财政年份:
    1998
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Standard Grant
RUI: Optical and Infrared Observations of Herbig-Haro Objects
RUI:赫比格-哈罗天体的光学和红外观测
  • 批准号:
    9417209
  • 财政年份:
    1995
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Standard Grant

相似海外基金

Aspects of the coarse geometry of discrete groups
离散群的粗略几何的各个方面
  • 批准号:
    RGPIN-2018-06841
  • 财政年份:
    2022
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry, Arithmeticity, and Random Walks on Discrete and Dense Subgroups of Lie Groups
李群的离散和稠密子群上的几何、算术和随机游走
  • 批准号:
    2203867
  • 财政年份:
    2022
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Standard Grant
Discrete groups of intermediate rank
中级离散组
  • 批准号:
    RGPIN-2019-05172
  • 财政年份:
    2022
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric quantum representations of discrete groups and their extension to higher category
离散群的几何量子表示及其向更高类别的扩展
  • 批准号:
    21H00986
  • 财政年份:
    2021
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Aspects of the coarse geometry of discrete groups
离散群的粗略几何的各个方面
  • 批准号:
    RGPIN-2018-06841
  • 财政年份:
    2021
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Discovery Grants Program - Individual
Discrete groups of intermediate rank
中级离散组
  • 批准号:
    RGPIN-2019-05172
  • 财政年份:
    2021
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Discovery Grants Program - Individual
Discrete groups of intermediate rank
中级离散组
  • 批准号:
    RGPIN-2019-05172
  • 财政年份:
    2020
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Discovery Grants Program - Individual
Aspects of the coarse geometry of discrete groups
离散群的粗略几何的各个方面
  • 批准号:
    RGPIN-2018-06841
  • 财政年份:
    2020
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Discovery Grants Program - Individual
Discrete groups of intermediate rank
中级离散组
  • 批准号:
    RGPIN-2019-05172
  • 财政年份:
    2019
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Discovery Grants Program - Individual
Aspects of the coarse geometry of discrete groups
离散群的粗略几何的各个方面
  • 批准号:
    RGPIN-2018-06841
  • 财政年份:
    2019
  • 资助金额:
    $ 24.76万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了