Topics in Projective and Hyperbolic Geometry

射影和双曲几何主题

基本信息

  • 批准号:
    0072607
  • 负责人:
  • 金额:
    $ 14.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-06-01 至 2004-05-31
  • 项目状态:
    已结题

项目摘要

Proposal: DMS-0072607PI: Richard SchwartzAbstract: Schwartz proposes to continue his research in the following general areas: Complex Hyperbolic Geometry, Dynamics in Projective Geometry, and Computer-Aided Mathematics.The first topic can be described informally as follows. Suppose one suspends a finite number of mirrors in space, and places an object in the vicinity of the mirrors. Looking at the object through the mirrors, one might see an infinite, regular pattern, like trees in an orange grove. On the other hand, one might see a confused and chaotic pattern, full of partial and overlapping images. The first case corresponds roughly to what s called a discrete group and the second corresponds roughly to what is called an indiscrete group. The basic question one would like to study is: which positions of the mirrors lead to the discrete alternative? In the case of Schwartz's research, the space in which the mirrors are suspended is a curved 4-dimensionaluniverse called complex hyperbolic space. This space is an exotic cousin of the famous non-Euclidean spaces constructed by Gauss and Lobachevsky more than a hundred years ago.The second topic involves simple constructions in straight-line geometry. The classical theorems in projective geometry, such as Pappus's theorem and Desargues theorem, can sometimes be applied over and over again, rather than just once. The result is a kind of dynamical system, involving an infinite family of points and lines. The mathematics behind the dynamical system usually transcends the mathematics behind the original result. For instance, one example studied by Schwartz leads to connections with integrable partial differential equations, determinental identities, and alternating sign matrices. Schwartz proposes to continue investigating these dynamical systems.The third topic involves computer aided mathematics. One frequently encounters a situation where the computer says that a certain result is true, but a proof is nowhere insight. Schwartz plans to investigate several situations where it might be possible to use the output of the computer directly as the basis of a proof that the result is true. In other words, the computation itself becomes the justification of the result. More concretely, Schwartz would like to try to deduce the entire orbit structure of certain kinds of dynamical systems based on a finite amount of information on the orbit. Obviously such a goal would only work in special situations.
提案:DMS-0072607 PI:Richard Schwartz摘要:Schwartz建议继续他在以下一般领域的研究:复双曲几何,射影几何中的动力学和计算机辅助数学。第一个主题可以非正式地描述如下。 假设在空间中悬挂有限数量的镜子,并在镜子附近放置一个物体。 透过镜子观察物体,人们可能会看到一个无限的、规则的图案,就像橙子格罗夫中的树木一样。 另一方面,人们可能会看到一个混乱和混乱的模式,充满了部分和重叠的图像。 第一种情况大致对应于所谓的离散群,第二种情况大致对应于所谓的非离散群。 人们想研究的基本问题是:镜子的哪些位置导致离散的选择? 在Schwartz的研究中,镜子悬挂的空间是一个弯曲的四维宇宙,称为复双曲空间。 这个空间是著名的非欧空间的一个异国表亲所构建的高斯和罗巴切夫斯基在一百多年前。第二个主题涉及简单的建设直线几何。 射影几何中的经典定理,如帕普斯定理和笛沙格定理,有时可以反复应用,而不仅仅是一次。 其结果是一种动力系统,包括一个无限的点和线的家庭。 动力系统背后的数学通常超越了原始结果背后的数学。 例如,一个例子研究施瓦茨导致连接与可积偏微分方程,行列式的身份,和交替签署矩阵。 施瓦茨建议继续研究这些动力系统。第三个主题涉及计算机辅助数学。 人们经常会遇到这样的情况,计算机说某个结果是正确的,但证明是无处洞察力。 Schwartz计划研究几种可能直接使用计算机输出作为证明结果为真的基础的情况。 换句话说,计算本身成为结果的证明。 更具体地说,施瓦茨想尝试推导出整个轨道结构的某些类型的动力系统的基础上,对轨道的有限数量的信息。 显然,这样的目标只有在特殊情况下才有效。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Schwartz其他文献

Getting more from automatic transcripts for semi-supervised language modeling
  • DOI:
    10.1016/j.csl.2015.08.007
  • 发表时间:
    2016-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Scott Novotney;Richard Schwartz;Sanjeev Khudanpur
  • 通讯作者:
    Sanjeev Khudanpur
A Heart With 67 Stents
  • DOI:
    10.1016/j.jacc.2010.02.077
  • 发表时间:
    2010-11-02
  • 期刊:
  • 影响因子:
  • 作者:
    Rami N. Khouzam;Rajvir Dahiya;Richard Schwartz
  • 通讯作者:
    Richard Schwartz
TCT CONNECT-136 Elevated Baseline B-Type Natriuretic Peptide Predicts Mortality in Transcatheter Aortic Valve Replacement
  • DOI:
    10.1016/j.jacc.2020.09.150
  • 发表时间:
    2020-10-27
  • 期刊:
  • 影响因子:
  • 作者:
    Giorgio Medranda;Basem Alawneh;Khaled Salhab;Richard Schwartz;Stephen Green
  • 通讯作者:
    Stephen Green
DIRECT TRANSCATHETER AORTIC VALVE REPLACEMENT RESULTS IN SIMILAR RATES OF ATHEROEMBOLIC EVENTS
  • DOI:
    10.1016/s0735-1097(20)31887-8
  • 发表时间:
    2020-03-24
  • 期刊:
  • 影响因子:
  • 作者:
    Giorgio Medranda;Kunal Brahmbhatt;Anjili Srivastava;Rafael Hernandez;Khaled Salhab;Richard Schwartz;Stephen Green
  • 通讯作者:
    Stephen Green
EARLY SUCCESS USING TRANSCATHETER MITRAL VALVE REPLACEMENT FOR THE TREATMENT OF DEGENERATED MITRAL BIOPROSTHESIS
  • DOI:
    10.1016/s0735-1097(19)33678-2
  • 发表时间:
    2019-03-12
  • 期刊:
  • 影响因子:
  • 作者:
    Giorgio Medranda;Kunal Brahmbhatt;Richard Schwartz;Stephen Green
  • 通讯作者:
    Stephen Green

Richard Schwartz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Schwartz', 18)}}的其他基金

Geometric optimization and polygonal geometry
几何优化和多边形几何
  • 批准号:
    2102802
  • 财政年份:
    2021
  • 资助金额:
    $ 14.18万
  • 项目类别:
    Continuing Grant
Topics in Geometry and Dynamics
几何和动力学主题
  • 批准号:
    1807320
  • 财政年份:
    2018
  • 资助金额:
    $ 14.18万
  • 项目类别:
    Continuing Grant
Topics in Geometry and Dynamics
几何和动力学主题
  • 批准号:
    1503883
  • 财政年份:
    2015
  • 资助金额:
    $ 14.18万
  • 项目类别:
    Standard Grant
Problems in Geometry and Dynamics
几何和动力学问题
  • 批准号:
    1204471
  • 财政年份:
    2012
  • 资助金额:
    $ 14.18万
  • 项目类别:
    Continuing Grant
Topics in geometry and dynamics
几何和动力学主题
  • 批准号:
    0905751
  • 财政年份:
    2009
  • 资助金额:
    $ 14.18万
  • 项目类别:
    Continuing Grant
Topics in Discrete Groups and Geometry
离散群和几何主题
  • 批准号:
    0604426
  • 财政年份:
    2006
  • 资助金额:
    $ 14.18万
  • 项目类别:
    Continuing Grant
Topics in Discrete Groups and Geometry
离散群和几何主题
  • 批准号:
    0603983
  • 财政年份:
    2005
  • 资助金额:
    $ 14.18万
  • 项目类别:
    Continuing Grant
Topics in Discrete Groups and Geometry
离散群和几何主题
  • 批准号:
    0305047
  • 财政年份:
    2003
  • 资助金额:
    $ 14.18万
  • 项目类别:
    Continuing Grant
Geometry and Dynamics
几何与动力学
  • 批准号:
    9803526
  • 财政年份:
    1998
  • 资助金额:
    $ 14.18万
  • 项目类别:
    Standard Grant
RUI: Optical and Infrared Observations of Herbig-Haro Objects
RUI:赫比格-哈罗天体的光学和红外观测
  • 批准号:
    9417209
  • 财政年份:
    1995
  • 资助金额:
    $ 14.18万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Arithmetic Dynamical Systems on Projective Varieties
职业:射影簇的算术动力系统
  • 批准号:
    2337942
  • 财政年份:
    2024
  • 资助金额:
    $ 14.18万
  • 项目类别:
    Continuing Grant
The embedded topology of projective plane curves and the generalization of splitting invariants
射影平面曲线的嵌入拓扑和分裂不变量的推广
  • 批准号:
    23K03042
  • 财政年份:
    2023
  • 资助金额:
    $ 14.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CIF: Small: Projective limits of sparse graphs
CIF:小:稀疏图的投影极限
  • 批准号:
    2311160
  • 财政年份:
    2023
  • 资助金额:
    $ 14.18万
  • 项目类别:
    Standard Grant
The Geometry of Curves in Projective Space via Degeneration and Deformation
通过退化和变形研究射影空间中的曲线几何
  • 批准号:
    2200641
  • 财政年份:
    2022
  • 资助金额:
    $ 14.18万
  • 项目类别:
    Standard Grant
Visualization of environmental improvement results for indoor and outdoor spaces of childcare facilities using behavior observation and photo projective method
使用行为观察和照片投影法将托儿设施室内外空间的环境改善结果可视化
  • 批准号:
    22K14399
  • 财政年份:
    2022
  • 资助金额:
    $ 14.18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Projective geometry in arbitrary characteristic and its application to fundamental algebraic varieties
任意特征的射影几何及其在基本代数簇中的应用
  • 批准号:
    22K03236
  • 财政年份:
    2022
  • 资助金额:
    $ 14.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Projective models for spaces of constant sectional curvature
恒定截面曲率空间的射影模型
  • 批准号:
    573639-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 14.18万
  • 项目类别:
    University Undergraduate Student Research Awards
Formalizing the fundamental theorem of projective geometry
射影几何基本定理的形式化
  • 批准号:
    573161-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 14.18万
  • 项目类别:
    University Undergraduate Student Research Awards
Construtions of log symplectic structures which characterize quadric hypersurfaces and projective spaces.
表征二次超曲面和射影空间的对数辛结构的构造。
  • 批准号:
    21K20339
  • 财政年份:
    2021
  • 资助金额:
    $ 14.18万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Mori cones of the blow-ups of weighted projective surfaces
加权投影面放大的森锥体
  • 批准号:
    562644-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 14.18万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了