Topics in geometry and dynamics
几何和动力学主题
基本信息
- 批准号:0905751
- 负责人:
- 金额:$ 34.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Richard Schwartz plans to continue his research in geometric dynamics. A central focus of his research is the study of outer billiards. In 2006, Schwartz resolved the central problem in this 50-year-old subject, the Moser-Neumann problem concerning the stability of outer billiards orbits. Schwartz will continue to develop the theory, exploring connections to self-similar tilings, limit sets of discrete groups, and renormalization. Schwartz also plans to continue studying irrational polygonal billiards, with a focus on the Triangular Billiards Problem, which asks if every triangular shaped billiard table has a periodic billiard path. Finally, Schwartz plans to study basic geometric iterations such as those defined by iterated barycentric subdivision.The common theme in Schwartz's proposed research is the analysis of what happens when a simple geometric construction is repeated over and over again. For example, in outer billiards, a toy model for planetary motion, a point (the satellite) moves around the outside of a convex planar shape (the planet) according to a simple geometric rule. Resolving a 50 year old question about this system, Schwartz found examples of convex shapes, and starting positions for the point, such that the point wanders unboundedly far away from the shape while following the rules of the game. One might say that these shapes are examples of planets whose satellites can wander off into space. Iterated geometric constructions such as outer billiards are intellectually appealing and scientifically important because their simple definitions sometimes lead to extremely rich and mysterious behavior, as do analogous systems in the natural sciences.
理查德施瓦茨计划继续他的研究几何动力学。他研究的一个中心焦点是外台球的研究。2006年,施瓦茨解决了这个有50年历史的课题的核心问题,即关于台球外轨道稳定性的莫泽-诺依曼问题。 施瓦茨将继续发展的理论,探索连接到自相似平铺,限制集离散群体,重整化。 Schwartz还计划继续研究无理多边形台球,重点是三角形台球问题,该问题询问是否每个三角形台球桌都有周期性台球路径。Schwartz计划研究基本的几何迭代,例如迭代重心细分定义的几何迭代。Schwartz提出的研究中的共同主题是分析当一个简单的几何构造重复时会发生什么。一遍又一遍。例如,在行星运动的玩具模型外台球中,一个点(卫星)根据简单的几何规则围绕凸平面形状(行星)的外部移动。在解决这个系统的一个50年前的问题时,Schwartz发现了凸形的例子,以及点的起始位置,使得点在遵循游戏规则的同时无限地远离形状。有人可能会说,这些形状是行星的例子,其卫星可以漫游到太空中。像外台球这样的迭代几何结构在智力上很有吸引力,在科学上也很重要,因为它们的简单定义有时会导致极其丰富和神秘的行为,就像自然科学中的类似系统一样。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Schwartz其他文献
A Heart With 67 Stents
- DOI:
10.1016/j.jacc.2010.02.077 - 发表时间:
2010-11-02 - 期刊:
- 影响因子:
- 作者:
Rami N. Khouzam;Rajvir Dahiya;Richard Schwartz - 通讯作者:
Richard Schwartz
TCT CONNECT-136 Elevated Baseline B-Type Natriuretic Peptide Predicts Mortality in Transcatheter Aortic Valve Replacement
- DOI:
10.1016/j.jacc.2020.09.150 - 发表时间:
2020-10-27 - 期刊:
- 影响因子:
- 作者:
Giorgio Medranda;Basem Alawneh;Khaled Salhab;Richard Schwartz;Stephen Green - 通讯作者:
Stephen Green
Getting more from automatic transcripts for semi-supervised language modeling
- DOI:
10.1016/j.csl.2015.08.007 - 发表时间:
2016-03-01 - 期刊:
- 影响因子:
- 作者:
Scott Novotney;Richard Schwartz;Sanjeev Khudanpur - 通讯作者:
Sanjeev Khudanpur
DIRECT TRANSCATHETER AORTIC VALVE REPLACEMENT RESULTS IN SIMILAR RATES OF ATHEROEMBOLIC EVENTS
- DOI:
10.1016/s0735-1097(20)31887-8 - 发表时间:
2020-03-24 - 期刊:
- 影响因子:
- 作者:
Giorgio Medranda;Kunal Brahmbhatt;Anjili Srivastava;Rafael Hernandez;Khaled Salhab;Richard Schwartz;Stephen Green - 通讯作者:
Stephen Green
EARLY SUCCESS USING TRANSCATHETER MITRAL VALVE REPLACEMENT FOR THE TREATMENT OF DEGENERATED MITRAL BIOPROSTHESIS
- DOI:
10.1016/s0735-1097(19)33678-2 - 发表时间:
2019-03-12 - 期刊:
- 影响因子:
- 作者:
Giorgio Medranda;Kunal Brahmbhatt;Richard Schwartz;Stephen Green - 通讯作者:
Stephen Green
Richard Schwartz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Schwartz', 18)}}的其他基金
Geometric optimization and polygonal geometry
几何优化和多边形几何
- 批准号:
2102802 - 财政年份:2021
- 资助金额:
$ 34.57万 - 项目类别:
Continuing Grant
Topics in Discrete Groups and Geometry
离散群和几何主题
- 批准号:
0604426 - 财政年份:2006
- 资助金额:
$ 34.57万 - 项目类别:
Continuing Grant
Topics in Discrete Groups and Geometry
离散群和几何主题
- 批准号:
0603983 - 财政年份:2005
- 资助金额:
$ 34.57万 - 项目类别:
Continuing Grant
Topics in Discrete Groups and Geometry
离散群和几何主题
- 批准号:
0305047 - 财政年份:2003
- 资助金额:
$ 34.57万 - 项目类别:
Continuing Grant
Topics in Projective and Hyperbolic Geometry
射影和双曲几何主题
- 批准号:
0072607 - 财政年份:2000
- 资助金额:
$ 34.57万 - 项目类别:
Continuing Grant
RUI: Optical and Infrared Observations of Herbig-Haro Objects
RUI:赫比格-哈罗天体的光学和红外观测
- 批准号:
9417209 - 财政年份:1995
- 资助金额:
$ 34.57万 - 项目类别:
Standard Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
RTG: Geometry, Group Actions, and Dynamics at Wisconsin
RTG:威斯康星州的几何、群体行动和动力学
- 批准号:
2230900 - 财政年份:2023
- 资助金额:
$ 34.57万 - 项目类别:
Continuing Grant
Interactions between geometry, topology, number theory, and dynamics
几何、拓扑、数论和动力学之间的相互作用
- 批准号:
2303572 - 财政年份:2023
- 资助金额:
$ 34.57万 - 项目类别:
Standard Grant
Dynamics and Hodge theory: Uniformization and Bialgebraic Geometry
动力学和霍奇理论:均匀化和双代数几何
- 批准号:
2305394 - 财政年份:2023
- 资助金额:
$ 34.57万 - 项目类别:
Standard Grant
Improved optimization of covalent ligands using a novel implementation of quantum mechanics suitable for large ligand/protein systems.
使用适用于大型配体/蛋白质系统的量子力学的新颖实现改进了共价配体的优化。
- 批准号:
10601968 - 财政年份:2023
- 资助金额:
$ 34.57万 - 项目类别:
Geometry and dynamics in moduli spaces of surfaces
表面模空间中的几何和动力学
- 批准号:
2304840 - 财政年份:2023
- 资助金额:
$ 34.57万 - 项目类别:
Standard Grant
Arakelov Geometry and Algebraic Dynamics
阿拉克洛夫几何和代数动力学
- 批准号:
2302586 - 财政年份:2023
- 资助金额:
$ 34.57万 - 项目类别:
Standard Grant
Elucidating the spatiotemporal regulation of septal peptidoglycan synthases in E.coli
阐明大肠杆菌中隔膜肽聚糖合酶的时空调节
- 批准号:
10680050 - 财政年份:2023
- 资助金额:
$ 34.57万 - 项目类别:
Learn Systems Biology Equations From Snapshot Single Cell Genomic Data
从快照单细胞基因组数据学习系统生物学方程
- 批准号:
10736507 - 财政年份:2023
- 资助金额:
$ 34.57万 - 项目类别:
Conference: I.H.E.S. Workshop: Homogeneous Dynamics and Geometry in Higher-Rank Lie Groups
会议:I.H.E.S.
- 批准号:
2321093 - 财政年份:2023
- 资助金额:
$ 34.57万 - 项目类别:
Standard Grant