Analysis of Optimal Control Problems with State Space Constraints Arising in Applications

应用中出现的状态空间约束最优控制问题分析

基本信息

  • 批准号:
    0305965
  • 负责人:
  • 金额:
    $ 10.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-08-15 至 2007-07-31
  • 项目状态:
    已结题

项目摘要

In this project, synthesis type sufficient conditions for optimality of controlled trajectories in optimal control problems with state-space constraints will be developed, including both local results in the form of a field of extremals around a reference trajectory and global results in the form of a regular synthesis. This research is strongly motivated by problems arising in applications and will be used to prove optimality of families of extremals for problems from two different application areas, namely (a) the minimization of the base transit time in semi-conductor devices in electronics and (b) the analysis of mathematical models for cancer chemotherapy when explicit upper limits on the number of cancer cells or lower limits for bone marrow are included. (a) In electronics, the problem of choosing the base-doping profile to minimize the base transit time in semi-conductor devices generally is solved numerically. In this project, the problem is formulated as an optimal control problem with state space constraints, and different models corresponding to both homojunction and heterojunction bipolar transistors are analyzed. For silicon bipolar transistors, explicit analytic solutions for general carrier diffusion coefficients will be derived, and their optimality will be proven by constructing a complete synthesis. (b) In many mathematical models for cancer chemotherapy the aim is to minimize the number of cancer cells at the end of a pre-determined fixed therapy interval while limiting the toxicity of the drugs through a penalty term. This, however, does not always prevent the number of cancer cells from rising to unacceptably high levels in between. It therefore is more realistic to consider models that incorporate explicit limits on the cancer cells as state-space constraints. The analysis of optimal controls for such models will be pursued.In this project, mathematical conditions will be developed that guarantee the optimality of controlled processes in the presence of strict limits. This theoretical research will be guided by two practical problems, one from electronics, the other biomedical. In the electronics topic, complete analytical solutions will be developed for a simplified model describing the speed of certain semiconductor devices. In the biomedical area, mathematical models for chemotherapy of cancer or other diseases will be analyzed in the presence of restrictions, for example, that bone marrow must not fall below a specified minimum level or that cancer cells are not allowed to increase beyond a maximum level. These topics also will be used to illustrate optimal control methods on an undergraduate level with more relevant and realistic problems than are currently available in most textbooks on the subject.
在该项目中,将开发具有状态空间约束的最优控制问题中受控轨迹最优性的综合类型充分条件,包括参考轨迹周围极值场形式的局部结果和常规综合形式的全局结果。 这项研究受到应用中出现的问题的强烈推动,并将用于证明极值族对于两个不同应用领域问题的最优性,即(a)电子学中半导体器件中基本渡越时间的最小化;(b)当包括明确的癌细胞数量上限或骨髓下限时,对癌症化疗的数学模型进行分析。 (a) 在电子学中,选择基极掺杂分布以最小化半导体器件中的基极渡越时间的问题通常是通过数值解决的。 在该项目中,该问题被表述为具有状态空间约束的最优控制问题,并分析了对应于同质结和异质结双极晶体管的不同模型。 对于硅双极晶体管,将导出一般载流子扩散系数的显式解析解,并通过构建完整的综合来证明其最优性。 (b) 在许多癌症化疗的数学模型中,目的是在预定的固定治疗间隔结束时最大限度地减少癌细胞的数量,同时通过惩罚项限制药物的毒性。 然而,这并不总能阻止癌细胞数量在两者之间上升到不可接受的高水平。 因此,考虑将癌细胞的明确限制作为状态空间约束的模型更为现实。 将继续对此类模型的最优控制进行分析。在该项目中,将开发数学条件,以保证在存在严格限制的情况下受控过程的最优性。 这项理论研究将以两个实际问题为指导,一个来自电子学,另一个来自生物医学。 在电子主题中,将为描述某些半导体器件速度的简化模型开发完整的分析解决方案。 在生物医学领域,癌症或其他疾病化疗的数学模型将在存在限制的情况下进行分析,例如,骨髓不得低于指定的最低水平,或者不允许癌细胞增加超过最高水平。 这些主题还将用于说明本科水平的最优控制方法,其中包含比当前大多数该主题教科书更相关和更现实的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Heinz Schaettler其他文献

Heinz Schaettler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Heinz Schaettler', 18)}}的其他基金

Collaborative Research: Regular synthesis for multi-input optimal control problems with applications to biomedicine
合作研究:多输入最优控制问题的常规综合及其在生物医学中的应用
  • 批准号:
    1311729
  • 财政年份:
    2013
  • 资助金额:
    $ 10.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Optimal Control of Multi-Input Mathematical Models for Tumor Dynamics under Combination Therapies
合作研究:联合治疗下肿瘤动力学多输入数学模型的优化控制
  • 批准号:
    1008209
  • 财政年份:
    2010
  • 资助金额:
    $ 10.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Analysis of Optimal and Suboptimal Controls for Mathematical Models Arising in Novel Cancer Therapies
合作研究:新型癌症疗法中数学模型的最优和次优控制分析
  • 批准号:
    0707410
  • 财政年份:
    2007
  • 资助金额:
    $ 10.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Optimal Control of Mathematical Models for Cancer Treatments
合作研究:癌症治疗数学模型的优化控制
  • 批准号:
    0405848
  • 财政年份:
    2004
  • 资助金额:
    $ 10.25万
  • 项目类别:
    Standard Grant
U.S.-Polish Collaborative Research on Variational Methods inthe Control of Nonlinear Systems
美波合作研究非线性系统控制变分法
  • 批准号:
    9527672
  • 财政年份:
    1996
  • 资助金额:
    $ 10.25万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometric Properties of Extremal Trajectories and Singularities of the Value Function
数学科学:极值轨迹的几何性质和值函数的奇异性
  • 批准号:
    9503356
  • 财政年份:
    1995
  • 资助金额:
    $ 10.25万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Geometric Methods in the Control of Nonlinear Systems
数学科学:非线性系统控制中的几何方法
  • 批准号:
    9100043
  • 财政年份:
    1991
  • 资助金额:
    $ 10.25万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: The Structure of the Small-Time Reachable Set and Regularity Properties of Optimal Trajectories for Control- Linear Systems
数学科学:控制线性系统的小时间可达集的结构和最优轨迹的正则性质
  • 批准号:
    8820413
  • 财政年份:
    1989
  • 资助金额:
    $ 10.25万
  • 项目类别:
    Continuing Grant

相似海外基金

Implementing optimal Control with principla Component Analysis
通过原理成分分析实现最优控制
  • 批准号:
    2606832
  • 财政年份:
    2021
  • 资助金额:
    $ 10.25万
  • 项目类别:
    Studentship
Optimal control problems in mathematical biology: Modelling, analysis and numerics
数学生物学中的最优控制问题:建模、分析和数值
  • 批准号:
    2435611
  • 财政年份:
    2020
  • 资助金额:
    $ 10.25万
  • 项目类别:
    Studentship
Elucidation of the lipid oxidation mechanisms and their optimal control leading to a healthy- and food-based society of the future through the analysis of lipid hydroperoxides isomers
通过分析脂质氢过氧化物异构体,阐明脂质氧化机制及其最佳控制,从而构建未来的健康食品社会
  • 批准号:
    19H02901
  • 财政年份:
    2019
  • 资助金额:
    $ 10.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of oscillation control bearing based on the unsteady topology optimal design analysis
基于非定常拓扑优化设计分析的振动控制轴承研制
  • 批准号:
    18K03897
  • 财政年份:
    2018
  • 资助金额:
    $ 10.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric Analysis and Optimal Control of Quantum Systems in the KP Configuration; Generalizations to nonlinear Systems with Symmetries
KP 配置中量子系统的几何分析和优化控制;
  • 批准号:
    1710558
  • 财政年份:
    2017
  • 资助金额:
    $ 10.25万
  • 项目类别:
    Standard Grant
Development of a unified framework for optimal control and estimation of nonlinear stochastic systems based on path integral analysis
基于路径积分分析的非线性随机系统最优控制和估计统一框架的开发
  • 批准号:
    15K18089
  • 财政年份:
    2015
  • 资助金额:
    $ 10.25万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Analysis and Optimal Design of Aquatic and Atmospheric Vehicles That Use Biologically Inspired Propulsion and Control Methods
使用仿生推进和控制方法的水上和大气飞行器的分析和优化设计
  • 批准号:
    1435484
  • 财政年份:
    2014
  • 资助金额:
    $ 10.25万
  • 项目类别:
    Standard Grant
Efficient computational methods for worst-case analysis and optimal control of nonlinear dynamical systems
用于非线性动力系统最坏情况分析和最优控制的有效计算方法
  • 批准号:
    DP120101549
  • 财政年份:
    2012
  • 资助金额:
    $ 10.25万
  • 项目类别:
    Discovery Projects
Development of systems analysis and process control approaches for optimal soil and groundwater remediation
开发系统分析和过程控制方法以实现最佳土壤和地下水修复
  • 批准号:
    283317-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 10.25万
  • 项目类别:
    Discovery Grants Program - Individual
Development of systems analysis and process control approaches for optimal soil and groundwater remediation
开发系统分析和过程控制方法以实现最佳土壤和地下水修复
  • 批准号:
    283317-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 10.25万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了