Directions in Index Theory and Riemannian Geometry
指数理论和黎曼几何方向
基本信息
- 批准号:0306242
- 负责人:
- 金额:$ 13.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-01 至 2007-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTDIRECTIONS IN INDEX THEORY AND RIEMANNIAN GEOMETRYThis proposal concerns geometric questions about varioustypes of spaces, namely smooth Riemannian manifolds, measuredmetric spaces, singular spaces and noncommutative spaces.The questions about smooth Riemannian manifolds concerncurvature conditions, such as when a compact manifold-with-boundarycan admit a metric having nonnegative scalar curvature on the interiorand nonnegative mean curvature on the boundary, and when a closedmanifold can admit a metric with positive p-curvature tensor.The questions about measured metric spaces concern possibleextensions of the Ricci tensor to such spaces. Thequestions about singular spaces concern elliptic analysis.The questions about noncommutative geometry concern local proofsof the general foliation index theorem.As mathematics and physics have evolved, the concept of space has alsoevolved. Some evident examples from physics are the evolution fromflat space to curved space, and the evolution from the classical phasespace to the quantum mechanical Hilbert space. There have also beenreasons intrinsic to mathematics that lead one to extendthe notion of space. Of course, one does not want to make arbitrarydefinitions, but one rather wants to consider concepts that arisenaturally from real problems.A more recent notion of space falls under the heading of``noncommutative geometry'', in which a traditional space isfirst considered to be defined in terms of the functions on it, and thenthe ring of functions is generalized from the commutative case to allowfor a noncommutative ring of ``functions''. Noncommutative geometryis rooted in the branch of geometric analysis called index theory.Sometimes problems about ordinary ``commutative'' spaces, such asfoliations, can be translated intoproblems about noncommutative spaces and attacked from that angle.Many of the questions considered in thisproposal have their roots in physics. Throughout the years there hasbeen much fruitful interaction between mathematics and physics, andthe proposed work will hopefully contribute to this interaction.In particular, questions about positive scalar curvature arise ingeneral relativity theory, and noncommutative geometry touches on manyareas of modern theoretical physics.
指标理论与黎曼几何的方向这个建议涉及各种空间的几何问题,即光滑黎曼流形、度量空间、奇异空间和非对易空间.光滑黎曼流形的问题涉及曲率条件,例如当一个有边界的紧致流形允许一个度量在其边界上具有非负的数量曲率和非负的平均曲率,关于度量空间的问题涉及Ricci张量在度量空间中的可能扩张。 奇异空间的问题涉及椭圆分析,非对易几何的问题涉及一般叶理指数定理的局部证明,随着数学和物理学的发展,空间的概念也在发展。 物理学中的一些明显的例子是从平坦空间到弯曲空间的演化,以及从经典相空间到量子力学希尔伯特空间的演化。 也有数学内在的原因导致人们扩展空间的概念。当然,人们不想随意定义,而是想考虑那些自然地脱离真实的问题的概念。一个更近的空间概念福尔斯属于“非对易几何”的范畴,在这个范畴中,传统的空间首先被认为是根据其上的函数来定义的,然后将函数环从交换的情形推广到非交换的"函数“环。 非对易几何植根于几何分析的一个分支,称为指数理论。有时,关于普通“对易”空间的问题,如叶理,可以转化为关于非对易空间的问题,并从这个角度进行攻击。在这个建议中考虑的许多问题都有其物理根源。 多年来,数学和物理之间的相互作用卓有成效,而我们所提出的工作也有望对这种相互作用有所贡献。特别是,关于正标量曲率的问题在广义相对论中出现,非对易几何涉及现代理论物理的许多领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Lott其他文献
A proof of the axial anomaly
- DOI:
10.1007/bf01240358 - 发表时间:
1985-09-01 - 期刊:
- 影响因子:2.600
- 作者:
John Lott - 通讯作者:
John Lott
The Yang-Mills collective-coordinate potential
- DOI:
10.1007/bf01212399 - 发表时间:
1984-09-01 - 期刊:
- 影响因子:2.600
- 作者:
John Lott - 通讯作者:
John Lott
Effective actions and large-N limits
- DOI:
10.1007/bf01212689 - 发表时间:
1985-03-01 - 期刊:
- 影响因子:2.600
- 作者:
John Lott - 通讯作者:
John Lott
Signatures and higher signatures of $S^1$ -quotients
- DOI:
10.1007/s002080050347 - 发表时间:
2000-04-01 - 期刊:
- 影响因子:1.400
- 作者:
John Lott - 通讯作者:
John Lott
Renormalization group flow for general σ-models
- DOI:
10.1007/bf01206956 - 发表时间:
1986-03-01 - 期刊:
- 影响因子:2.600
- 作者:
John Lott - 通讯作者:
John Lott
John Lott的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Lott', 18)}}的其他基金
Collapsing in Differential Geometry and the Einstein Flow
微分几何的崩溃和爱因斯坦流
- 批准号:
1810700 - 财政年份:2018
- 资助金额:
$ 13.82万 - 项目类别:
Standard Grant
Singular Ricci flow, Einstein flow and index theory
奇异里奇流、爱因斯坦流和指数理论
- 批准号:
1510192 - 财政年份:2015
- 资助金额:
$ 13.82万 - 项目类别:
Continuing Grant
Ricci flow, optimal transport and index theory
里奇流、最优传输和指数理论
- 批准号:
1207654 - 财政年份:2012
- 资助金额:
$ 13.82万 - 项目类别:
Continuing Grant
Ricci Curvature, Ricci Flow and Foliations
里奇曲率、里奇流和叶状结构
- 批准号:
0903076 - 财政年份:2009
- 资助金额:
$ 13.82万 - 项目类别:
Continuing Grant
International Conference on Ricci Flow, Paris, France, June 30 - July 4, 2008
里奇流国际会议,法国巴黎,2008 年 6 月 30 日至 7 月 4 日
- 批准号:
0704193 - 财政年份:2008
- 资助金额:
$ 13.82万 - 项目类别:
Standard Grant
Riemannian Geometry and Spectral Analysis
黎曼几何和谱分析
- 批准号:
0072154 - 财政年份:2000
- 资助金额:
$ 13.82万 - 项目类别:
Standard Grant
Spectral Invariants in Geometry and Topology
几何和拓扑中的谱不变量
- 批准号:
9704633 - 财政年份:1997
- 资助金额:
$ 13.82万 - 项目类别:
Standard Grant
Mathematical Sciences: Spectral Analysis and Index Theory
数学科学:谱分析和指数理论
- 批准号:
9403652 - 财政年份:1994
- 资助金额:
$ 13.82万 - 项目类别:
Continuing Grant
相似海外基金
Operator algebras and index theory in quantum walks and quantum information theory
量子行走和量子信息论中的算子代数和索引论
- 批准号:
24K06756 - 财政年份:2024
- 资助金额:
$ 13.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Equivariant index theory of infinite-dimensional manifolds and related topics
无限维流形等变指数理论及相关主题
- 批准号:
23K12970 - 财政年份:2023
- 资助金额:
$ 13.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
K-theory of Operator Algebras and Index Theory on Spaces of Singularities
算子代数的K理论与奇点空间索引论
- 批准号:
2247322 - 财政年份:2023
- 资助金额:
$ 13.82万 - 项目类别:
Continuing Grant
Getzler rescaling in index theory
指数理论中的盖茨勒缩放
- 批准号:
572728-2022 - 财政年份:2022
- 资助金额:
$ 13.82万 - 项目类别:
University Undergraduate Student Research Awards
Index Theory, Stability of Orbits and Heteroclinic Phenomenon
指数理论、轨道稳定性和异宿现象
- 批准号:
RGPIN-2019-06847 - 财政年份:2022
- 资助金额:
$ 13.82万 - 项目类别:
Discovery Grants Program - Individual
Noncommutative Geometry on fraclats and index theory
分形和指数理论中的非交换几何
- 批准号:
21K13795 - 财政年份:2021
- 资助金额:
$ 13.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Index Theory, Stability of Orbits and Heteroclinic Phenomenon
指数理论、轨道稳定性和异宿现象
- 批准号:
RGPIN-2019-06847 - 财政年份:2021
- 资助金额:
$ 13.82万 - 项目类别:
Discovery Grants Program - Individual
Index Theory, Stability of Orbits and Heteroclinic Phenomenon
指数理论、轨道稳定性和异宿现象
- 批准号:
RGPIN-2019-06847 - 财政年份:2020
- 资助金额:
$ 13.82万 - 项目类别:
Discovery Grants Program - Individual
Investigation of New Reliability Index of Power System based on Expected Utility Theory
基于期望效用理论的电力系统新可靠性指标研究
- 批准号:
19K04330 - 财政年份:2019
- 资助金额:
$ 13.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Applications of index theory to geometry and physics
指数理论在几何和物理学中的应用
- 批准号:
19K14544 - 财政年份:2019
- 资助金额:
$ 13.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists