Collapsing in Differential Geometry and the Einstein Flow

微分几何的崩溃和爱因斯坦流

基本信息

  • 批准号:
    1810700
  • 负责人:
  • 金额:
    $ 24.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

A geometric flow is a controlled way to smoothly deform a geometric object, such as a curve or a surface, or a 3-dimensional slice of spacetime equipped with a metric that measures length and angles. This project is about the Einstein flow, which deforms such slices in a way that, when the slices are stacked up, the result is 4-dimensional solution of the vacuum Einstein equations, the fundamental equations that govern our universe. Deducing something about the future (or past) state of the universe from information about the present is of evident interest in cosmology, and pose a very challenging mathematical problem. In this project, the investigator will focus on the asymptotic (or long-term) behavior of spacetimes, in the "cosmological" setting where the slices are compact (i.e., they wrap back on themselves, like the surface of a balloon, no matter how large their size). In this context, even if the spacetime does not develop singularities (e.g., a black hole), the spatial slices can asymptotically collapse, meaning that their volumes become smaller than a naive rescaling argument would suggest. Recently, the investigator adapted techniques from Riemannian geometry (and in particular the study of collapsing solutions of the Ricci flow) to give new information about expanding vacuum spacetimes. Part of this project will be to build on these results and obtain more precise results about the future asymptotics of these spacetimes. Another component of this project will be the training of graduate students and postdoctoral scholars. Results of this project will also be disseminated to the public via journal publications, conferences, and posting to online mathematics archives.Collapsing in differential geometry is the phenomenon that a sequence of Riemannian manifolds can converge to a lower dimensional space in the Gromov-Hausdorff topology. The research in this proposal will extend collapsing methods, both within differential geometry and within geometric flows. In recent work, the investigator adapted collapsing techniques to give new information about the future asymptotics of expanding Einstein flows. One feature was the avoidance of any a priori symmetry assumptions; instead, continuous symmetries appeared in the collapsing limit. The proposed research will extend this in various ways. One direction is a more concrete understanding of the asymptotics of expanding vacuum solutions. A second direction is the asymptotics of shrinking Einstein flows, which are relevant for spacetime singularities. In addition, the investigator will work on problems in differential geometry and geometric flows such as collapsing with a lower bound on the curvature operator, and the behavior of scalar curvature lower bounds under metric convergence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几何流是一种可控的方式,可以平滑地变形几何对象,例如曲线或曲面,或配备测量长度和角度的度量的三维时空切片。 这个项目是关于爱因斯坦流的,它使这些切片变形,当切片堆叠起来时,结果是真空爱因斯坦方程的四维解,这是管理我们宇宙的基本方程。 从现在的信息中推断出宇宙未来(或过去)的状态显然是宇宙学的兴趣所在,并提出了一个非常具有挑战性的数学问题。在这个项目中,研究人员将专注于时空的渐近(或长期)行为,在“宇宙学”的设置中,切片是紧凑的(即,它们会像气球的表面一样自己卷回去,不管它们的尺寸有多大)。在这种情况下,即使时空不发展奇点(例如,黑洞),空间切片可以渐近坍缩,这意味着它们的体积变得比天真的重新缩放论点所建议的要小。最近,研究人员采用了黎曼几何的技术(特别是里奇流坍缩解的研究)来提供有关扩展真空时空的新信息。该项目的一部分将是建立在这些结果的基础上,并获得关于这些时空未来渐近性的更精确的结果。该项目的另一个组成部分将是培训研究生和博士后学者。该项目的成果还将通过期刊出版物、会议和在线数学档案发布给公众。微分几何中的坍缩是一列黎曼流形在Gromov-Hausdorff拓扑中收敛到低维空间的现象。在这个建议中的研究将扩展崩溃的方法,无论是在微分几何和几何流。在最近的工作中,研究人员采用了塌缩技术,以提供有关扩展爱因斯坦流未来渐近性的新信息。一个特点是避免了任何先验对称性假设;相反,连续对称性出现在坍缩极限中。拟议的研究将以各种方式扩展这一点。一个方向是更具体地理解扩展真空解的渐近性。第二个方向是收缩爱因斯坦流的渐近性,这与时空奇点有关。此外,该研究员还将研究微分几何和几何流中的问题,例如曲率算子的下限崩溃,以及度量收敛下标量曲率下限的行为。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the initial geometry of a vacuum cosmological spacetime
  • DOI:
    10.1088/1361-6382/ab77eb
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    J. Lott
  • 通讯作者:
    J. Lott
A Dolbeault–Hilbert complex for a variety withisolated singular points
具有孤立奇点的簇的 Dolbeault-Hilbert 复形
  • DOI:
    10.2140/akt.2019.4.707
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Lott, John
  • 通讯作者:
    Lott, John
Comparison geometry of holomorphic bisectional curvature for Kähler manifolds and limit spaces
克勒流形和极限空间的全纯二分曲率的比较几何
  • DOI:
    10.1215/00127094-2021-0058
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Lott, John
  • 通讯作者:
    Lott, John
A Hilbert bundle description of differential K-theory
  • DOI:
    10.1016/j.aim.2018.02.002
  • 发表时间:
    2015-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Gorokhovsky;J. Lott
  • 通讯作者:
    A. Gorokhovsky;J. Lott
Kasner-like regions near crushing singularities *
接近压垮奇点的类卡斯纳区域*
  • DOI:
    10.1088/1361-6382/abd3e1
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Lott, John
  • 通讯作者:
    Lott, John
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Lott其他文献

A proof of the axial anomaly
The Yang-Mills collective-coordinate potential
Effective actions and large-N limits
Signatures and higher signatures of $S^1$ -quotients
  • DOI:
    10.1007/s002080050347
  • 发表时间:
    2000-04-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    John Lott
  • 通讯作者:
    John Lott
Renormalization group flow for general σ-models

John Lott的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Lott', 18)}}的其他基金

Singular Ricci flow, Einstein flow and index theory
奇异里奇流、爱因斯坦流和指数理论
  • 批准号:
    1510192
  • 财政年份:
    2015
  • 资助金额:
    $ 24.21万
  • 项目类别:
    Continuing Grant
RTG: Geometry and Topology
RTG:几何和拓扑
  • 批准号:
    1344991
  • 财政年份:
    2014
  • 资助金额:
    $ 24.21万
  • 项目类别:
    Continuing Grant
Ricci flow, optimal transport and index theory
里奇流、最优传输和指数理论
  • 批准号:
    1207654
  • 财政年份:
    2012
  • 资助金额:
    $ 24.21万
  • 项目类别:
    Continuing Grant
Ricci Curvature, Ricci Flow and Foliations
里奇曲率、里奇流和叶状结构
  • 批准号:
    0903076
  • 财政年份:
    2009
  • 资助金额:
    $ 24.21万
  • 项目类别:
    Continuing Grant
International Conference on Ricci Flow, Paris, France, June 30 - July 4, 2008
里奇流国际会议,法国巴黎,2008 年 6 月 30 日至 7 月 4 日
  • 批准号:
    0704193
  • 财政年份:
    2008
  • 资助金额:
    $ 24.21万
  • 项目类别:
    Standard Grant
Ricci Curvature and Ricci Flow
里奇曲率和里奇流
  • 批准号:
    0604829
  • 财政年份:
    2006
  • 资助金额:
    $ 24.21万
  • 项目类别:
    Standard Grant
Directions in Index Theory and Riemannian Geometry
指数理论和黎曼几何方向
  • 批准号:
    0306242
  • 财政年份:
    2003
  • 资助金额:
    $ 24.21万
  • 项目类别:
    Continuing Grant
Riemannian Geometry and Spectral Analysis
黎曼几何和谱分析
  • 批准号:
    0072154
  • 财政年份:
    2000
  • 资助金额:
    $ 24.21万
  • 项目类别:
    Standard Grant
Spectral Invariants in Geometry and Topology
几何和拓扑中的谱不变量
  • 批准号:
    9704633
  • 财政年份:
    1997
  • 资助金额:
    $ 24.21万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Spectral Analysis and Index Theory
数学科学:谱分析和指数理论
  • 批准号:
    9403652
  • 财政年份:
    1994
  • 资助金额:
    $ 24.21万
  • 项目类别:
    Continuing Grant

相似海外基金

(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
  • 批准号:
    2246031
  • 财政年份:
    2023
  • 资助金额:
    $ 24.21万
  • 项目类别:
    Standard Grant
Differential geometry and integrable systems: exploiting new links
微分几何和可积系统:利用新的联系
  • 批准号:
    23H00083
  • 财政年份:
    2023
  • 资助金额:
    $ 24.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Discrete differential geometry, Lie sphere geometry, discrete surfaces theory, surface representations
离散微分几何、李球几何、离散曲面理论、曲面表示
  • 批准号:
    22KF0255
  • 财政年份:
    2023
  • 资助金额:
    $ 24.21万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Conference: Red Raider Mini-Symposium on Differential Geometry, Integrable Systems, and Applications
会议:Red Raider 微分几何、可积系统及应用小型研讨会
  • 批准号:
    2301994
  • 财政年份:
    2023
  • 资助金额:
    $ 24.21万
  • 项目类别:
    Standard Grant
Wall-crossing: from classical algebraic geometry to differential geometry, mirror symmetry and derived algebraic Geometry
穿墙:从经典代数几何到微分几何、镜面对称和派生代数几何
  • 批准号:
    EP/X032779/1
  • 财政年份:
    2023
  • 资助金额:
    $ 24.21万
  • 项目类别:
    Fellowship
Differential Geometry and Minimal Surfaces
微分几何和最小曲面
  • 批准号:
    2305255
  • 财政年份:
    2023
  • 资助金额:
    $ 24.21万
  • 项目类别:
    Standard Grant
Algebraic and Differential Geometry
代数和微分几何
  • 批准号:
    2883146
  • 财政年份:
    2023
  • 资助金额:
    $ 24.21万
  • 项目类别:
    Studentship
Differential Equations in Complex Riemannian Geometry
复杂黎曼几何中的微分方程
  • 批准号:
    2203607
  • 财政年份:
    2022
  • 资助金额:
    $ 24.21万
  • 项目类别:
    Continuing Grant
Differential Geometry and Geometric Analysis Conference
微分几何与几何分析会议
  • 批准号:
    2200723
  • 财政年份:
    2022
  • 资助金额:
    $ 24.21万
  • 项目类别:
    Standard Grant
Seeking universal principle for nonequilibrium thermodynamics based on differential geometry
基于微分几何寻求非平衡热力学普遍原理
  • 批准号:
    22H01141
  • 财政年份:
    2022
  • 资助金额:
    $ 24.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了