Ricci Curvature and Ricci Flow

里奇曲率和里奇流

基本信息

项目摘要

This proposal has two main topics. The first is to study measured metric spaces with nonnegative Ricci curvature in a general sense. Many of the known results about Ricci curvature for smooth spaces have extensions to nonsmooth spaces. However, there are also many results known for smooth spaces, for which the nonsmooth extension is unclear. The proposed research will explore the extent to which the curvature properties of nonsmooth spaces resemble those of smooth spaces. The second main topic is Ricci flow. The Ricci flow, introduced by R. Hamilton in the 1980's, is a way to evolve the "shape" of a space by means of its Ricci curvature. Recently, Perelman has made spectacular use of the Ricci flow to address the most important problems in three-dimensional topology. The long-time behavior of the Ricci flow is largely unknown and will be addressed in the proposal. In addition, the extension of Perelman's results to three-dimensional orbifolds will be considered.Overall, the proposal is concerned with the idea of curvature. Historically, curvature was first considered for curves in the plane, and then for curves and surfaces in three-dimensional space. Riemann showed how to make sense of the curvature of a smooth space of arbitrary dimension. In fact, there are various notions of curvature - the sectional curvature defined by Riemann and the Ricci curvature, which is an averaging of the sectional curvature.The Einstein equation of general relativity is phrased in terms of Ricci curvature. Ever since Riemann's time, there has been interest in making sense of the curvature of nonsmooth spaces. Alexandrov gave a good notion of what it means for a nonsmooth space to have nonnegative sectional curvature. Recent work, in collaboration with Cedric Villani, has given a good notion of what it means for a nonsmooth space to have nonnegative Ricci curvature. The definition is in terms of "optimal transport", a subject which has a history in applied mathematics. Part of the research in the proposal uses "optimal transport" to study the geometry of nonsmooth spaces. Going the other way, ideas from geometry will be used to address issues in "optimal transport".
该提案有两个主要议题。 第一个是在一般意义下研究具有非负Ricci曲率的度量空间。许多已知的关于光滑空间的Ricci曲率的结果都推广到了非光滑空间。 然而,也有许多已知的光滑空间的结果,其中的非光滑扩展是不清楚的。拟议的研究将探讨非光滑空间的曲率性质在多大程度上类似于光滑空间。第二个主题是Ricci流。 Ricci流是由R.汉密尔顿在20世纪80年代,是一种方式来发展的“形状”的空间,其里奇曲率的手段。 最近,佩雷尔曼利用里奇流来解决三维拓扑中最重要的问题。 里奇流的长期行为在很大程度上是未知的,将在提案中解决。此外,还将考虑把Perelman的结果推广到三维orbifolds。总的来说,这个建议是关于曲率的。 历史上,曲率首先被认为是平面中的曲线,然后是三维空间中的曲线和曲面。 黎曼证明了如何理解任意维的光滑空间的曲率。实际上,曲率有各种各样的概念--黎曼定义的截面曲率和里奇曲率,里奇曲率是截面曲率的平均值。广义相对论的爱因斯坦方程就是用里奇曲率来表述的。自从黎曼时代以来,人们一直对理解非光滑空间的曲率感兴趣。 亚历山德罗夫给出了一个很好的概念,即非光滑空间具有非负截面曲率意味着什么。 最近与Cedric Villani合作的工作给出了一个很好的概念,即非光滑空间具有非负Ricci曲率意味着什么。 这个定义是根据“最佳运输”,一个在应用数学中有历史的主题。 提案中的部分研究使用“最优传输”来研究非光滑空间的几何形状。 另一方面,几何学的想法将用于解决“最佳交通”中的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Lott其他文献

A proof of the axial anomaly
The Yang-Mills collective-coordinate potential
Effective actions and large-N limits
Signatures and higher signatures of $S^1$ -quotients
  • DOI:
    10.1007/s002080050347
  • 发表时间:
    2000-04-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    John Lott
  • 通讯作者:
    John Lott
Renormalization group flow for general σ-models

John Lott的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Lott', 18)}}的其他基金

Collapsing in Differential Geometry and the Einstein Flow
微分几何的崩溃和爱因斯坦流
  • 批准号:
    1810700
  • 财政年份:
    2018
  • 资助金额:
    $ 14.97万
  • 项目类别:
    Standard Grant
Singular Ricci flow, Einstein flow and index theory
奇异里奇流、爱因斯坦流和指数理论
  • 批准号:
    1510192
  • 财政年份:
    2015
  • 资助金额:
    $ 14.97万
  • 项目类别:
    Continuing Grant
RTG: Geometry and Topology
RTG:几何和拓扑
  • 批准号:
    1344991
  • 财政年份:
    2014
  • 资助金额:
    $ 14.97万
  • 项目类别:
    Continuing Grant
Ricci flow, optimal transport and index theory
里奇流、最优传输和指数理论
  • 批准号:
    1207654
  • 财政年份:
    2012
  • 资助金额:
    $ 14.97万
  • 项目类别:
    Continuing Grant
Ricci Curvature, Ricci Flow and Foliations
里奇曲率、里奇流和叶状结构
  • 批准号:
    0903076
  • 财政年份:
    2009
  • 资助金额:
    $ 14.97万
  • 项目类别:
    Continuing Grant
International Conference on Ricci Flow, Paris, France, June 30 - July 4, 2008
里奇流国际会议,法国巴黎,2008 年 6 月 30 日至 7 月 4 日
  • 批准号:
    0704193
  • 财政年份:
    2008
  • 资助金额:
    $ 14.97万
  • 项目类别:
    Standard Grant
Directions in Index Theory and Riemannian Geometry
指数理论和黎曼几何方向
  • 批准号:
    0306242
  • 财政年份:
    2003
  • 资助金额:
    $ 14.97万
  • 项目类别:
    Continuing Grant
Riemannian Geometry and Spectral Analysis
黎曼几何和谱分析
  • 批准号:
    0072154
  • 财政年份:
    2000
  • 资助金额:
    $ 14.97万
  • 项目类别:
    Standard Grant
Spectral Invariants in Geometry and Topology
几何和拓扑中的谱不变量
  • 批准号:
    9704633
  • 财政年份:
    1997
  • 资助金额:
    $ 14.97万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Spectral Analysis and Index Theory
数学科学:谱分析和指数理论
  • 批准号:
    9403652
  • 财政年份:
    1994
  • 资助金额:
    $ 14.97万
  • 项目类别:
    Continuing Grant

相似海外基金

Mean curvature flow and Ricci flow
平均曲率流和里奇流
  • 批准号:
    RGPIN-2016-04331
  • 财政年份:
    2021
  • 资助金额:
    $ 14.97万
  • 项目类别:
    Discovery Grants Program - Individual
Mean curvature flow and Ricci flow
平均曲率流和里奇流
  • 批准号:
    RGPIN-2016-04331
  • 财政年份:
    2020
  • 资助金额:
    $ 14.97万
  • 项目类别:
    Discovery Grants Program - Individual
Mean curvature flow and Ricci flow
平均曲率流和里奇流
  • 批准号:
    RGPIN-2016-04331
  • 财政年份:
    2019
  • 资助金额:
    $ 14.97万
  • 项目类别:
    Discovery Grants Program - Individual
Mean curvature flow and Ricci flow
平均曲率流和里奇流
  • 批准号:
    RGPIN-2016-04331
  • 财政年份:
    2018
  • 资助金额:
    $ 14.97万
  • 项目类别:
    Discovery Grants Program - Individual
Singularity analysis for ricci flow and mean curvature flow
里奇流和平均曲率流的奇异性分析
  • 批准号:
    DE180101348
  • 财政年份:
    2018
  • 资助金额:
    $ 14.97万
  • 项目类别:
    Discovery Early Career Researcher Award
Mean curvature flow and Ricci flow
平均曲率流和里奇流
  • 批准号:
    RGPIN-2016-04331
  • 财政年份:
    2017
  • 资助金额:
    $ 14.97万
  • 项目类别:
    Discovery Grants Program - Individual
Solutions to Ricci flow whose scalar curvature is bounded in L^p (II)
标量曲率以 L^p 为界的 Ricci 流的解 (II)
  • 批准号:
    339362328
  • 财政年份:
    2017
  • 资助金额:
    $ 14.97万
  • 项目类别:
    Priority Programmes
Mean curvature flow and Ricci flow
平均曲率流和里奇流
  • 批准号:
    RGPIN-2016-04331
  • 财政年份:
    2016
  • 资助金额:
    $ 14.97万
  • 项目类别:
    Discovery Grants Program - Individual
Mean curvature flow and Ricci flow
平均曲率流和里奇流
  • 批准号:
    1406394
  • 财政年份:
    2014
  • 资助金额:
    $ 14.97万
  • 项目类别:
    Standard Grant
Mean curvature flow, minimal surfaces and Ricci flow
平均曲率流、最小曲面和里奇流
  • 批准号:
    1311795
  • 财政年份:
    2013
  • 资助金额:
    $ 14.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了