Algebraic Topology
代数拓扑
基本信息
- 批准号:0306429
- 负责人:
- 金额:$ 34.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-05-15 至 2007-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0306429Matthew Ando and Randy McCarthyAndo and McCarthy will study the relationship between stable homotopytheory and mathematical physics and number theory mediated by ellipticcohomology, and the relationship between stable homotopy theory andalgebra mediated by K-theory. Ando will use elliptic cohomology toinvestigate what string theory and the theory of elliptic curves haveto say about the topology of compact manifolds. He is particularlyinterested in bringing recent work on open string theories andD-branes to bear on problems in elliptic cohomology. McCarthy willdevelop a theory of Witt structures for bimodules and a theory ofsmoothness and De Rham cohomology for commutative ring spectra. Theformer offers new insight and substantial generalizations ofcalculations of Hesselholt and Madsen, while the latter offers thepossibility of developing a crystalline Chern character and soextending to commutative ring spectra the work of Bloch.The last few years have seen an astonishing proliferation ofunexpected new structure in topology, involving new interactions withother areas of mathematics and physics. Ando and McCarthy areparticularly interested in articulating these new connections.Ando's research seeks to give explicit form to the deep and surprisingrelationship between topology, high energy physics, and number theorysignaled by elliptic cohomology. The traditional paradigm ofalgebraic topology is the use of algebra to model phenomena intopology. McCarthy's research turns this paradigm upside down, usingthe deep structure of topological spaces to tackle hard problems inalgebra.
DMS-0306429 Matthew Ando和Randy McCarthy Ando和McCarthy将研究稳定同伦理论与以椭圆上同调为中介的数学物理和数论之间的关系,以及稳定同伦理论与以K-理论为中介的代数之间的关系。 安藤将使用椭圆上同调来研究弦理论和椭圆曲线理论对紧致流形的拓扑结构有什么看法。 他特别感兴趣的是把最近的工作开弦理论和D膜承担问题的椭圆上同调。 McCarthy将发展双模的Witt结构理论和交换环谱的光滑性和De Rham上同调理论。 前者为Hesselholt和Madsen的计算提供了新的见解和实质性的推广,而后者则为发展一种晶体陈省身特征并将Bloch的工作扩展到交换环谱提供了可能性。过去几年,拓扑学中出现了令人惊讶的、意想不到的新结构,涉及到与数学和物理学其他领域的新相互作用。 Ando和McCarthy对阐明这些新的联系特别感兴趣。Ando的研究旨在明确拓扑学、高能物理学和数论之间由椭圆上同调所表示的深刻而广泛的关系。 代数拓扑学的传统范式是用代数来模拟拓扑学中的现象。 McCarthy的研究颠覆了这种范式,利用拓扑空间的深层结构来解决代数中的难题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Ando其他文献
Matthew Ando的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Ando', 18)}}的其他基金
Strings and automorphic forms in algebraic topology
代数拓扑中的串和自守形式
- 批准号:
1228196 - 财政年份:2012
- 资助金额:
$ 34.62万 - 项目类别:
Standard Grant
Twists of elliptic cohomology and K-theory
椭圆上同调和 K 理论的扭曲
- 批准号:
1104746 - 财政年份:2011
- 资助金额:
$ 34.62万 - 项目类别:
Standard Grant
Collaborative Research: Chromatic homotopy theory and open string theory
合作研究:色同伦理论和开弦理论
- 批准号:
0705233 - 财政年份:2007
- 资助金额:
$ 34.62万 - 项目类别:
Continuing Grant
Fields Institute conference on elliptic cohomology and string topology
菲尔兹研究所椭圆上同调和弦拓扑会议
- 批准号:
0438807 - 财政年份:2004
- 资助金额:
$ 34.62万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9627412 - 财政年份:1996
- 资助金额:
$ 34.62万 - 项目类别:
Fellowship Award
Mathematical Sciences: On the Relationship between conjectures about elliptic cohomology, and the cohomology theory E-sub-n
数学科学:论椭圆上同调猜想与上同调理论的关系 E-sub-n
- 批准号:
9306938 - 财政年份:1993
- 资助金额:
$ 34.62万 - 项目类别:
Continuing Grant
Mathematical Sciences: Algebraic Topology and Its Interactions With Representation Theory
数学科学:代数拓扑及其与表示论的相互作用
- 批准号:
9202052 - 财政年份:1992
- 资助金额:
$ 34.62万 - 项目类别:
Continuing Grant
相似海外基金
Algebraic Structures in String Topology
弦拓扑中的代数结构
- 批准号:
2405405 - 财政年份:2024
- 资助金额:
$ 34.62万 - 项目类别:
Standard Grant
Conference: Algebraic Structures in Topology 2024
会议:拓扑中的代数结构 2024
- 批准号:
2348092 - 财政年份:2024
- 资助金额:
$ 34.62万 - 项目类别:
Standard Grant
Applications of algebraic topology to quantum field theory
代数拓扑在量子场论中的应用
- 批准号:
2882485 - 财政年份:2023
- 资助金额:
$ 34.62万 - 项目类别:
Studentship
Collaborative Research: Conference: New England Algebraic Topology and Mathematical Physics Seminar (NEAT MAPS)
合作研究:会议:新英格兰代数拓扑与数学物理研讨会(NEAT MAPS)
- 批准号:
2329854 - 财政年份:2023
- 资助金额:
$ 34.62万 - 项目类别:
Standard Grant
Collaborative Research: Conference: New England Algebraic Topology and Mathematical Physics Seminar (NEAT MAPS)
合作研究:会议:新英格兰代数拓扑与数学物理研讨会(NEAT MAPS)
- 批准号:
2329855 - 财政年份:2023
- 资助金额:
$ 34.62万 - 项目类别:
Standard Grant
RTG: Arithmetic, Combinatorics, and Topology of Algebraic Varieties
RTG:代数簇的算术、组合学和拓扑
- 批准号:
2231565 - 财政年份:2023
- 资助金额:
$ 34.62万 - 项目类别:
Continuing Grant
The Topology and Hodge Theory of Algebraic Maps
代数图的拓扑和霍奇理论
- 批准号:
2200492 - 财政年份:2022
- 资助金额:
$ 34.62万 - 项目类别:
Continuing Grant
Conference on Algebraic Topology and Topological Data Analysis
代数拓扑与拓扑数据分析会议
- 批准号:
2223905 - 财政年份:2022
- 资助金额:
$ 34.62万 - 项目类别:
Standard Grant
Algebraic topology of quantum spin systems
量子自旋系统的代数拓扑
- 批准号:
22K13910 - 财政年份:2022
- 资助金额:
$ 34.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ALGEBRAIC TOPOLOGY FOR THE STUDY OF MANIFOLDS
研究流形的代数拓扑
- 批准号:
2747348 - 财政年份:2022
- 资助金额:
$ 34.62万 - 项目类别:
Studentship














{{item.name}}会员




