Twists of elliptic cohomology and K-theory

椭圆上同调和 K 理论的扭曲

基本信息

  • 批准号:
    1104746
  • 负责人:
  • 金额:
    $ 16.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-15 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

Many subtle issues about elliptic cohomology concern its twists. For example, the representations of loop groups arise in algebraic topology in twisted equivariant elliptic cohomology (Grojnowski-Ando) and in twisted equivariant K-theory (Freed-Hopkins-Teleman). Ando proposes to construct a comparison map between twisted elliptic cohomology and twisted K-theory which explains why the representations of loop groups appear on both theories. For another example, in recent years there has been spectacular progress in the study of topological field theories, and it is of fundamental importance to understand how these vary in families. Ando will investigate how the most important twists of elliptic cohomology are related to the problem of constructing certain families of two-dimensional topological field theories. It is hoped that this will give insight into how elliptic cohomology itself varies in families. Elliptic cohomology is the locus of a deep and mysterious interaction between topology, number theory, and physics. In his 1998 Gibbs Lecture to the American Mathematical Society, the physicist Edward Witten called this interaction "a little piece of 21st century mathematics which happened to land in the 20th century", and proposed that understanding it would be an interesting and important problem for the 21st century. Recent work has shown that one of the fundamental pieces of structure of elliptic cohomology are its "twists": they crop up again and again each time there is important progress in the subject. Ando's project will focus directly on these twists, exploring their manifestations in algebra, topology, and physics.
关于椭圆上同的许多微妙问题都与椭圆上同的曲折有关。例如,在扭曲等变椭圆上同调(Grojnowski-Ando)和扭曲等变k理论(Freed-Hopkins-Teleman)的代数拓扑中出现了环群的表示。Ando提出了在扭椭圆上同调和扭k理论之间构造一个比较映射,解释了环群的表示在这两个理论上出现的原因。另一个例子是,近年来拓扑场论的研究取得了惊人的进展,了解这些理论在家庭中的变化是至关重要的。Ando将研究椭圆上同调的最重要的扭曲是如何与构造二维拓扑场论的某些族的问题联系起来的。希望这将有助于了解椭圆上同性本身在家族中是如何变化的。椭圆上同调是拓扑、数论和物理学之间深刻而神秘的相互作用的轨迹。1998年,物理学家爱德华·威滕(Edward Witten)在美国数学学会(American Mathematical Society)的吉布斯讲座(Gibbs Lecture)中,将这种相互作用称为“21世纪数学的一小块碰巧落在了20世纪”,并提出,理解这种相互作用将是21世纪一个有趣而重要的问题。最近的研究表明,椭圆上同调的基本结构之一是它的“扭曲”:每当该学科取得重要进展时,它们就会一次又一次地出现。安藤的项目将直接关注这些扭曲,探索它们在代数、拓扑和物理中的表现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Ando其他文献

Matthew Ando的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Ando', 18)}}的其他基金

Mathways
数学之路
  • 批准号:
    1449269
  • 财政年份:
    2015
  • 资助金额:
    $ 16.33万
  • 项目类别:
    Standard Grant
Strings and automorphic forms in algebraic topology
代数拓扑中的串和自守形式
  • 批准号:
    1228196
  • 财政年份:
    2012
  • 资助金额:
    $ 16.33万
  • 项目类别:
    Standard Grant
Collaborative Research: Chromatic homotopy theory and open string theory
合作研究:色同伦理论和开弦理论
  • 批准号:
    0705233
  • 财政年份:
    2007
  • 资助金额:
    $ 16.33万
  • 项目类别:
    Continuing Grant
Fields Institute conference on elliptic cohomology and string topology
菲尔兹研究所椭圆上同调和弦拓扑会议
  • 批准号:
    0438807
  • 财政年份:
    2004
  • 资助金额:
    $ 16.33万
  • 项目类别:
    Standard Grant
Algebraic Topology
代数拓扑
  • 批准号:
    0306429
  • 财政年份:
    2003
  • 资助金额:
    $ 16.33万
  • 项目类别:
    Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
  • 批准号:
    9627412
  • 财政年份:
    1996
  • 资助金额:
    $ 16.33万
  • 项目类别:
    Fellowship Award
Mathematical Sciences: On the Relationship between conjectures about elliptic cohomology, and the cohomology theory E-sub-n
数学科学:论椭圆上同调猜想与上同调理论的关系 E-sub-n
  • 批准号:
    9306938
  • 财政年份:
    1993
  • 资助金额:
    $ 16.33万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Algebraic Topology and Its Interactions With Representation Theory
数学科学:代数拓扑及其与表示论的相互作用
  • 批准号:
    9202052
  • 财政年份:
    1992
  • 资助金额:
    $ 16.33万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Elliptic cohomology and quantum field theory
职业:椭圆上同调和量子场论
  • 批准号:
    2340239
  • 财政年份:
    2024
  • 资助金额:
    $ 16.33万
  • 项目类别:
    Continuing Grant
Geometric Representations of the Elliptic Quantum Toroidal Algebras
椭圆量子环形代数的几何表示
  • 批准号:
    23K03029
  • 财政年份:
    2023
  • 资助金额:
    $ 16.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
LEAPS-MPS: Quantum Field Theories and Elliptic Cohomology
LEAPS-MPS:量子场论和椭圆上同调
  • 批准号:
    2316646
  • 财政年份:
    2023
  • 资助金额:
    $ 16.33万
  • 项目类别:
    Standard Grant
Elliptic Cohomology, Geometry, and Physics
椭圆上同调、几何和物理
  • 批准号:
    2205835
  • 财政年份:
    2022
  • 资助金额:
    $ 16.33万
  • 项目类别:
    Standard Grant
Conference on Equivariant Elliptic Cohomology and Geometric Representation Theory
等变椭圆上同调与几何表示理论会议
  • 批准号:
    1903754
  • 财政年份:
    2019
  • 资助金额:
    $ 16.33万
  • 项目类别:
    Standard Grant
Derived Geometry, Elliptic Cohomology, and Loop Stacks
导出几何、椭圆上同调和循环堆栈
  • 批准号:
    1714273
  • 财政年份:
    2017
  • 资助金额:
    $ 16.33万
  • 项目类别:
    Standard Grant
Interactions of Elliptic Cohomology with Other Subjects
椭圆上同调与其他学科的相互作用
  • 批准号:
    0754204
  • 财政年份:
    2007
  • 资助金额:
    $ 16.33万
  • 项目类别:
    Standard Grant
Field Theories and Elliptic Cohomology
场论和椭圆上同调
  • 批准号:
    0707068
  • 财政年份:
    2007
  • 资助金额:
    $ 16.33万
  • 项目类别:
    Standard Grant
A general study on topology of algebraic varieties and its related topics
代数簇拓扑及其相关课题的一般研究
  • 批准号:
    19540094
  • 财政年份:
    2007
  • 资助金额:
    $ 16.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elliptic cohomology and the enumerative geometry of elliptic Calabi-Yau manifolds : Towards the understanding of string dualities
椭圆上同调和椭圆卡拉比-丘流形的枚举几何:理解弦对偶性
  • 批准号:
    19540024
  • 财政年份:
    2007
  • 资助金额:
    $ 16.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了