Instabilities, Waves, and Growth in the Dynamics of Filaments
细丝动力学的不稳定性、波动和增长
基本信息
- 批准号:0307427
- 负责人:
- 金额:$ 17.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-15 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposal is divided into three main lines of interconnected research: the nonlinear analysis of filament instabilities, the study of wave propagation and singularity formation in elastic rods, and the analysis and modeling of elastic growth. The analysis of filament instabilities will be carried out through the use and extension of nonlinear analysis techniques developed by the principal investigators. These techniques, which yield systems of nonlinear amplitude equations of considerable mathematical interest, will be applied to a wide variety of cases of practical importance including extensible and shearable rods, tubes conveying fluids, and growing filamentary organisms. The studies of wave propagation in filaments under various conditions will be investigated by a variety of analytical stability techniques, and the investigations of singularity formation will draw on adaptations of techniques used to study wave propagation in inhomogeneous media. The modeling of elastic growth pertinent to biological processes will be developed according to continuum mechanical principles and applied to both filamentary and three dimensional structures.Filamentary structures are ubiquitous in both the natural and physical worlds at scales ranging from the microscopic to the macroscopic. In nature we see the sinuous motion of vines and plant tendrils; under the optical microscope we can see filamentary bacteria; and through electron microscopy we can see the structure of DNA strands. If the original motivations for developing a rational continuum mechanics of filamentary structures was provided by the mechanical world of cables, springs and struts, contemporary research has often been motivated by the biological context. These problems, including the fundamental natural phenomenon of growth, raise new challenges to the classical formulations. While the static theory of elastic structures has a long and distinguished history, the theory of dynamical effects still presents many important challenges, both theoretically and computationally. Work of the principal investigators over the past few years has shown that the governing equations of elastic filaments, can be reduced to more tractable nonlinear evolution equations capable of describing many dynamical bifurcations including the fundamental twist-to-writhe conversion. If this earlier work concentrated on simplest cases, the extension of this theory to a whole host of important cases of practical importance has yet to be developed. In addition to the effects of structural asymmetry, and inhomogeneity, the effects of internal fluid flow that arise in pipes and hoses, and the incorporation of growth effects required for biological modeling, will be addressed in work supported by this award. Once achieved, these formulations will provide the necessary mathematical tools to study conformation changes, instability, and wave propagation in filamentary structures as varied as whips, hoses and bacterial filaments. The principal investigators will apply these studies to the analysis of filamentary and other elastic structures in a variety of mechanical and biological settings such as the spontaneous change in handedness exhibited by climbing plants and other filamentary organisms, twist wave propagation in bacterial filaments, and morphological changes in aerially growing bacterial microorganisms and fungi. In all these examples, natural growth is a fundamental component in the morphological dynamics, and a variety of investigations will be carried out to improve our understanding of how this fundamental natural effect can be incorporated into self-consistent mathematical models. These will range from the inclusion of growth terms in the constitutive equations for rods, to the development of continuum mechanical models of growing three dimensional elastic structures such as those arising in the description of bulk growth in biological tissues.
该提案分为三个相互关联的研究主线:细丝不稳定性的非线性分析,弹性杆中波的传播和奇异性形成的研究,以及弹性增长的分析和建模。灯丝不稳定性的分析将通过主要研究者开发的非线性分析技术的使用和扩展来进行。这些技术,产生系统的非线性振幅方程的相当大的数学兴趣,将被应用到各种各样的情况下的实际重要性,包括可扩展和剪切杆,输送流体的管,和不断增长的微生物。将通过各种分析稳定性技术来研究各种条件下的细丝中的波传播,并且奇异性形成的研究将借鉴用于研究非均匀介质中的波传播的技术。与生物过程相关的弹性生长模型将根据连续介质力学原理发展,并应用于纤维和三维结构。纤维结构在自然和物理世界中普遍存在,从微观到宏观。在自然界中,我们看到藤蔓和植物卷须的蜿蜒运动;在光学显微镜下,我们可以看到寄生细菌;通过电子显微镜,我们可以看到DNA链的结构。如果最初的动机,发展一个合理的连续介质力学的结构是由电缆,弹簧和支柱的机械世界,当代研究往往是由生物背景的动机。这些问题,包括增长的基本自然现象,对经典公式提出了新的挑战。虽然弹性结构的静态理论有着悠久而杰出的历史,但动态效应理论仍然在理论和计算上提出了许多重要的挑战。主要研究人员在过去几年的工作表明,弹性细丝的控制方程,可以减少到更容易处理的非线性演化方程能够描述许多动力学分叉,包括基本的扭曲到扭动转换。如果说这一早期的工作集中在最简单的情况,那么将这一理论推广到具有实际重要性的大量重要情况,则还有待发展。除了结构不对称和不均匀性的影响,管道和软管中出现的内部流体流动的影响,以及生物建模所需的生长效应的结合,将在该奖项支持的工作中得到解决。一旦实现,这些公式将提供必要的数学工具,以研究构象变化,不稳定性,和波的传播,在不同的鞭,软管和细菌细丝的结构。主要研究人员将应用这些研究来分析各种机械和生物环境中的手征和其他弹性结构,例如攀缘植物和其他手征生物体所表现出的手征的自发变化,细菌细丝中的扭曲波传播,以及空中生长的细菌微生物和真菌的形态变化。在所有这些例子中,自然生长是形态动力学的一个基本组成部分,将进行各种调查,以提高我们对这种基本自然效应如何纳入自洽数学模型的理解。这些将包括在本构方程的增长条款杆,不断增长的三维弹性结构,如在生物组织中的散装增长的描述所产生的连续力学模型的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alain Goriely其他文献
Compact waves on planar elastic rods
- DOI:
10.1016/j.ijnonlinmec.2008.10.007 - 发表时间:
2009-06-01 - 期刊:
- 影响因子:
- 作者:
Bojan Đuričković;Alain Goriely;Giuseppe Saccomandi - 通讯作者:
Giuseppe Saccomandi
Multilevel irreversibility reveals higher-order organisation of non-equilibrium interactions in human brain dynamics
多级不可逆性揭示了人脑动力学中非平衡相互作用的高阶组织
- DOI:
10.1101/2024.05.02.592195 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ramón Nartallo;L. Bonetti;G. Fernández;P. Vuust;G. Deco;M. Kringelbach;R. Lambiotte;Alain Goriely - 通讯作者:
Alain Goriely
The multiscale mechanics of axon durotaxis
轴突趋硬性的多尺度力学
- DOI:
10.1016/j.jmps.2025.106134 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:6.000
- 作者:
Christoforos Kassianides;Alain Goriely;Hadrien Oliveri - 通讯作者:
Hadrien Oliveri
Elastic cavitation, tube hollowing, and differential growth in plants and biological tissues
植物和生物组织中的弹性空化、管空化以及差异生长
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Alain Goriely;Derek E. Moulton;Rebecca Vandiver - 通讯作者:
Rebecca Vandiver
Rate-dependent response of axonal microtubules and tau proteins under shear forces
轴突微管和 tau 蛋白在剪切力下的速率依赖性响应
- DOI:
10.21741/9781644902431-11 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Luca Bellino;Giuseppe Florio;Alain Goriely;Giuseppe Puglisi - 通讯作者:
Giuseppe Puglisi
Alain Goriely的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alain Goriely', 18)}}的其他基金
Multiscale modelling and mathematical methods for brain development, trauma, and diseases
大脑发育、创伤和疾病的多尺度建模和数学方法
- 批准号:
EP/R020205/1 - 财政年份:2018
- 资助金额:
$ 17.36万 - 项目类别:
Fellowship
One Year at BIO5: The Mathematical Modeling of Vascular Systems, Angiogenesis, and Tumour Growth
BIO5 一年:血管系统、血管生成和肿瘤生长的数学建模
- 批准号:
0623989 - 财政年份:2007
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Dynamics of Filaments: Modeling, Analysis and Application
细丝动力学:建模、分析和应用
- 批准号:
9972063 - 财政年份:1999
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: A Unified Theory of Crack Nucleation and Growth for Materials Subjected to Repetitive Surface Acoustic Waves and Dynamic Impacts
合作研究:重复表面声波和动态冲击下材料裂纹成核和扩展的统一理论
- 批准号:
2132528 - 财政年份:2021
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Collaborative Research: A Unified Theory of Crack Nucleation and Growth for Materials Subjected to Repetitive Surface Acoustic Waves and Dynamic Impacts
合作研究:重复表面声波和动态冲击下材料裂纹成核和扩展的统一理论
- 批准号:
2132551 - 财政年份:2021
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Elucidation and formulation of swell impacts on growth of wind waves and generation of surface turbulence in real oceans
阐明和制定涌浪对真实海洋中风浪增长和表面湍流产生的影响
- 批准号:
20H01969 - 财政年份:2020
- 资助金额:
$ 17.36万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Modelling the growth and propagation of Tsunami waves with non-linear shallow water wave equations
用非线性浅水波浪方程模拟海啸波的增长和传播
- 批准号:
515672-2017 - 财政年份:2017
- 资助金额:
$ 17.36万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Quantification of the Growth and Decay of Wind Driven Gravity-Capillary Waves
风驱动重力毛细波的增长和衰减的量化
- 批准号:
0647819 - 财政年份:2007
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Role of wave breaking on the growth and decay of wind-waves and the sea surface flux of momentum, heat and gasses such as CO2.
波浪破碎对风浪的增长和衰减以及海面动量、热量和二氧化碳等气体通量的作用。
- 批准号:
12304025 - 财政年份:2000
- 资助金额:
$ 17.36万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
MECHANISMS OF GENERATION OF GROWTH CONE CALCIUM WAVES
生长锥钙波的产生机制
- 批准号:
2892357 - 财政年份:1998
- 资助金额:
$ 17.36万 - 项目类别:
MECHANISMS OF GENERATION OF GROWTH CONE CALCIUM WAVES
生长锥钙波的产生机制
- 批准号:
6187744 - 财政年份:1998
- 资助金额:
$ 17.36万 - 项目类别:
MECHANISMS OF GENERATION OF GROWTH CONE CALCIUM WAVES
生长锥钙波的产生机制
- 批准号:
2697950 - 财政年份:1998
- 资助金额:
$ 17.36万 - 项目类别:
Characterization of Elastic Waves Induced by Growth of Cracks in the Earth's Crust and its Appliation to Evaluation of Crack Properties
地壳裂纹扩展诱发的弹性波表征及其在裂纹性质评价中的应用
- 批准号:
62550062 - 财政年份:1987
- 资助金额:
$ 17.36万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)