Multiscale modelling and mathematical methods for brain development, trauma, and diseases
大脑发育、创伤和疾病的多尺度建模和数学方法
基本信息
- 批准号:EP/R020205/1
- 负责人:
- 金额:$ 160.59万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The human brain is an organ of extreme complexity, the object of ultimate intellectual egocentrism, and a source of endless scientific challenges. At the basic functional level, the goal of many scientific enquiries is to understand the functions that result from the interaction of about 86 billion neurons with 100 trillion connections. From this perspective, the problem consists of connecting the biochemical and electrophysiological behavior of brain cells with the overall behavior of networks of connected cells. The ultimate goal is to translate the resulting macroscopic electrophysiological behavior into the functional dimension where direct relations can be established with neuronal response and, ultimately, behavior. Despite an overwhelming interest and major research initiatives on how our brain operates, comparatively little is known about how the brain functions at the physical and mechanical levels. Recent findings have directly linked major brain development, mechanisms, and diseases to the mechanical response of the brain both at the cellular and tissue levels. Various factors contribute to this poor state of knowledge. First, the brain is a fully enclosed organ that is particularly difficult to probe physically. Second, viewed as a solid, it is extremely soft and its mechanical response is heavily influenced by a fluid phase and multiple charged molecules found in its cells and in the extracellular matrix. A holistic mathematical analysis requires a fully coupled multi-field theory, which needs to be calibrated and validated experimentally. Further, most brain pathologies depend on many different factors and their physical manifestation may be conveniently ignored by focusing on genetics and cellular function as the primary driver. Nonetheless, the last decade has seen fundamental advances in different areas of brain mechanics and has revealed that one of the reasons that brain mechanics is particularly exciting is that it involves extreme scales: the extremely soft scale associated with neurosurgery; the extremely hard scale associated with the skull; the extremely slow scale associated with brain development and, the extremely fast scale associated with traumatic brain injury; the extremely small scales of protein aggregation within axons leading to cell death and the relatively extremely large scale of the brain itself where neuro-degeneratives processes take place. A mathematical theory needs to reconcile all these different scales within a unified theory.The objective of the proposed research is to develop the mathematical theory and tools to approach many questions related to brain mechanics. It will use the basic physical principles underlying brain function to address a number of problems and challenges appearing in normal and pathological situations. At the mathematical level, it requires the coupling of solid, fluid, electrochemical, and electromechanical components together with a theory of growth and remodelling. My aim is to build a general multiscale theoretical framework of brain mechanics linking molecular, cellular, tissue, and organ scales. Using these theories, I will tackle a number of fundamental questions in situations and pathologies where mechanics play a key role and where modeling can improve our understanding and predicting capabilities. These include brain development, brain folding, skull growth, brain surgery, traumatic brain injury, brain swelling, and neuro-degenerative diseases.
人脑是一个极其复杂的器官,是终极智力自我中心主义的对象,也是永无止境的科学挑战的源泉。在基本功能层面上,许多科学研究的目标是了解860亿个神经元与100万亿个连接相互作用所产生的功能。从这个角度来看,这个问题包括将脑细胞的生化和电生理行为与连接细胞网络的整体行为联系起来。最终目标是将由此产生的宏观电生理行为转化为功能维度,在功能维度中可以建立与神经元反应和最终行为的直接关系。尽管对我们的大脑如何运作有着巨大的兴趣和重大的研究计划,但相对而言,我们对大脑在物理和机械层面上的功能知之甚少。最近的研究发现直接将主要的大脑发育、机制和疾病与大脑在细胞和组织水平上的机械反应联系起来。各种因素导致了这种知识贫乏的状态。首先,大脑是一个完全封闭的器官,很难从物理上进行探测。其次,作为固体,它是非常柔软的,它的机械反应很大程度上受到流体相和在细胞和细胞外基质中发现的多个带电分子的影响。一个整体的数学分析需要一个完全耦合的多场理论,这需要校准和实验验证。此外,大多数脑病取决于许多不同的因素,他们的物理表现可能很容易被忽视,因为他们把重点放在遗传和细胞功能上,作为主要的驱动因素。尽管如此,过去十年在脑力学的不同领域取得了根本性的进展,并揭示了脑力学特别令人兴奋的原因之一是它涉及到极端的尺度:与神经外科相关的极端软尺度;头骨:与头骨相关的极其坚硬的鳞片;极慢的量表与大脑发育有关,极快的量表与创伤性脑损伤有关;轴突内极小尺度的蛋白质聚集导致细胞死亡,而大脑本身相对极大规模的神经退化过程发生。一个数学理论需要在一个统一的理论中协调所有这些不同的尺度。提出的研究目标是发展数学理论和工具来解决与脑力学有关的许多问题。它将使用大脑功能的基本物理原理来解决在正常和病理情况下出现的一些问题和挑战。在数学层面上,它需要固体、流体、电化学和机电组件的耦合,以及生长和重构的理论。我的目标是建立一个连接分子、细胞、组织和器官尺度的脑力学的通用多尺度理论框架。利用这些理论,我将解决一些情况和病理中的基本问题,其中力学发挥着关键作用,建模可以提高我们的理解和预测能力。这些疾病包括大脑发育、脑折叠、颅骨生长、脑外科手术、创伤性脑损伤、脑肿胀和神经退行性疾病。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A multi-scale model explains oscillatory slowing and neuronal hyperactivity in Alzheimer's disease.
- DOI:10.1098/rsif.2022.0607
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Neuronal activity induces symmetry breaking in neurodegenerative disease spreading
- DOI:10.1101/2023.10.02.560495
- 发表时间:2023-10
- 期刊:
- 影响因子:0
- 作者:Christoffer G. Alexandersen;A. Goriely;C. Bick
- 通讯作者:Christoffer G. Alexandersen;A. Goriely;C. Bick
Likely cavitation and radial motion of stochastic elastic spheres
- DOI:10.1088/1361-6544/ab7104
- 发表时间:2019-06
- 期刊:
- 影响因子:1.7
- 作者:L. Angela Mihai;T. Woolley;A. Goriely
- 通讯作者:L. Angela Mihai;T. Woolley;A. Goriely
Revisiting the wrinkling of elastic bilayers II: Post-bifurcation analysis
- DOI:10.1016/j.jmps.2020.104053
- 发表时间:2020-10-01
- 期刊:
- 影响因子:5.3
- 作者:Alawiye, Hamza;Farrell, Patrick E.;Goriely, Alain
- 通讯作者:Goriely, Alain
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alain Goriely其他文献
Compact waves on planar elastic rods
- DOI:
10.1016/j.ijnonlinmec.2008.10.007 - 发表时间:
2009-06-01 - 期刊:
- 影响因子:
- 作者:
Bojan Đuričković;Alain Goriely;Giuseppe Saccomandi - 通讯作者:
Giuseppe Saccomandi
Multilevel irreversibility reveals higher-order organisation of non-equilibrium interactions in human brain dynamics
多级不可逆性揭示了人脑动力学中非平衡相互作用的高阶组织
- DOI:
10.1101/2024.05.02.592195 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ramón Nartallo;L. Bonetti;G. Fernández;P. Vuust;G. Deco;M. Kringelbach;R. Lambiotte;Alain Goriely - 通讯作者:
Alain Goriely
The multiscale mechanics of axon durotaxis
轴突趋硬性的多尺度力学
- DOI:
10.1016/j.jmps.2025.106134 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:6.000
- 作者:
Christoforos Kassianides;Alain Goriely;Hadrien Oliveri - 通讯作者:
Hadrien Oliveri
Elastic cavitation, tube hollowing, and differential growth in plants and biological tissues
植物和生物组织中的弹性空化、管空化以及差异生长
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Alain Goriely;Derek E. Moulton;Rebecca Vandiver - 通讯作者:
Rebecca Vandiver
Rate-dependent response of axonal microtubules and tau proteins under shear forces
轴突微管和 tau 蛋白在剪切力下的速率依赖性响应
- DOI:
10.21741/9781644902431-11 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Luca Bellino;Giuseppe Florio;Alain Goriely;Giuseppe Puglisi - 通讯作者:
Giuseppe Puglisi
Alain Goriely的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alain Goriely', 18)}}的其他基金
One Year at BIO5: The Mathematical Modeling of Vascular Systems, Angiogenesis, and Tumour Growth
BIO5 一年:血管系统、血管生成和肿瘤生长的数学建模
- 批准号:
0623989 - 财政年份:2007
- 资助金额:
$ 160.59万 - 项目类别:
Standard Grant
Instabilities, Waves, and Growth in the Dynamics of Filaments
细丝动力学的不稳定性、波动和增长
- 批准号:
0307427 - 财政年份:2003
- 资助金额:
$ 160.59万 - 项目类别:
Standard Grant
Dynamics of Filaments: Modeling, Analysis and Application
细丝动力学:建模、分析和应用
- 批准号:
9972063 - 财政年份:1999
- 资助金额:
$ 160.59万 - 项目类别:
Standard Grant
相似国自然基金
Improving modelling of compact binary evolution.
- 批准号:10903001
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Towards establishing accurate estimates of national chronic hepatitis B prevalence and undiagnosed proportion in Canada
准确估计加拿大全国慢性乙型肝炎患病率和未确诊比例
- 批准号:
488763 - 财政年份:2023
- 资助金额:
$ 160.59万 - 项目类别:
Operating Grants
Mathematical modelling of cardiac perfusion
心脏灌注的数学模型
- 批准号:
2888273 - 财政年份:2023
- 资助金额:
$ 160.59万 - 项目类别:
Studentship
Mathematical Modelling of Rare Events in Nanoflows: A Feasibility Study
纳流中罕见事件的数学建模:可行性研究
- 批准号:
EP/W031426/1 - 财政年份:2023
- 资助金额:
$ 160.59万 - 项目类别:
Research Grant
Understanding the effect of mutations on cell behaviour in blood disorders through mathematical modelling and computational analysis
通过数学建模和计算分析了解突变对血液疾病细胞行为的影响
- 批准号:
2887435 - 财政年份:2023
- 资助金额:
$ 160.59万 - 项目类别:
Studentship
Mathematical modelling of lava flows undergoing rheological evolution
经历流变演化的熔岩流的数学模型
- 批准号:
EP/X028011/1 - 财政年份:2023
- 资助金额:
$ 160.59万 - 项目类别:
Fellowship
Mathematical modelling techniques and applications
数学建模技术及应用
- 批准号:
2868747 - 财政年份:2023
- 资助金额:
$ 160.59万 - 项目类别:
Studentship
Multiscale mathematical modelling to gain insights into hepatitis viruses
多尺度数学建模以深入了解肝炎病毒
- 批准号:
DE220100284 - 财政年份:2023
- 资助金额:
$ 160.59万 - 项目类别:
Discovery Early Career Researcher Award
Optimising the treatment of inflammation by targeting the phosphorylation of tristetraprolin: a combined experimental and mathematical modelling appro
通过靶向三四脯氨酸磷酸化优化炎症治疗:实验和数学建模相结合的方法
- 批准号:
2889903 - 财政年份:2023
- 资助金额:
$ 160.59万 - 项目类别:
Studentship
Life and Physical Sciences interface: Whole animal mathematical and computational modelling of motion
生命与物理科学接口:整个动物运动的数学和计算模型
- 批准号:
BB/X005038/1 - 财政年份:2023
- 资助金额:
$ 160.59万 - 项目类别:
Research Grant
Data-driven theory : adversarial immunodynamics, modelling and machine learning for engineered lymphocytes in the context of cancer immunotherapy
数据驱动理论:癌症免疫治疗背景下工程淋巴细胞的对抗性免疫动力学、建模和机器学习
- 批准号:
480418 - 财政年份:2023
- 资助金额:
$ 160.59万 - 项目类别:
Operating Grants