Finite Element Methods for Two Problems for Hyperbolic Partial Differential Equations

双曲偏微分方程两个问题的有限元方法

基本信息

  • 批准号:
    0308845
  • 负责人:
  • 金额:
    $ 16.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-08-15 至 2007-07-31
  • 项目状态:
    已结题

项目摘要

Finite element methods are often the method of choice for determining approximate solutions of partial differential equations (PDEs) and they are usually also the most thoroughly analyzed. However, this is not the case in the setting of nonlinear hyperbolic conservation laws, e.g., for compressible, inviscid flows and many other applications. The goal of the first project is to develop stable, efficient, and accurate finite element methodologies for this setting. It involves the use of hierarchical finite element bases (HFEBs). The principles used are similar to those that serve to define spectral viscosity methods. The goal is to maintain, at least away from discontinuities, the full accuracy of the finite element discretization while simultaneously suppressing unwanted and unstable oscillations. HFEBs have important advantages over both standard finite element bases and spectral bases. The separation of scales inherent in HFEBs (but which is totally absent from standard bases) allows for the selective application of artificial viscosity to only the high frequency components of the discrete solution. On the other hand, HFEB functions defined with respect to the finest grid levels are locally supported. This leads to the easy identification of the positions of discontinuities (something difficult to do with spectral bases) which, in turn, enables the efficient implementation of grid refinement strategies and the spacially selective application of artificial diffusion. All of these desirable features lead to the possibility of developing stable, high-accuracy methods for hyperbolic conservation laws. Analytical and computational studies will be carried for multi-dimensional hyperbolic conservation laws. Among the important algorithmic questions that need to be answered are how to best choose the frequency and spacially-dependent artificial viscosity coefficient and how to efficiently implement higher-order HFEBs. The second project deals with exact controllability problems for hyperbolic PDEs that impact, among many other applications, the stabilization of vibrating structures and the reduction of aerodynamically induced noise. Some preliminary studies have resulted in efficient finite difference algorithms for one-dimensional and geometrically simple two-dimensional wave equation problems. The algorithms are based on discretizing the wave equation and the initial and terminal conditions to produce and underdetermined linear system. This system acts as a constraint for an optimization problem which is defined in order to extract particular solutions of the controllability problem. Compared to previous approaches, the new method does not require regularization to obtain convergent approximations. The proposed work includes the extension of the new algorithmic approach to the finite element setting so that more complicated and realistic geometries can be treated. Extensions to equations with variable coefficients and to systems of hyperbolic PDEs, e.g., the equations of linear elasticity, will also be considered. The algorithmic studies will be complemented with analyses of the convergence properties of the optimization-based methods.The proposed projects are directly related to important problems in many applications so that their completion should have significant impact on how those problems are solved. For example, although huge efforts have been devoted to developing computational techniques for supersonic flows, there is still a need for developing high-accuracy methods that can be implemented for general geometries such as flows about airplanes. The first proposed project has exactly this goal, and its successful completion would directly impact the way problems are solved in the aerospace, nuclear, geophysics, and other communities. Furthermore, for the setting of controlling the unstable motions of structures or for the reduction in noise produced by engines, there are few existing algorithms, despite the fact that that setting is directly related to problems in the design of bridges, airplanes, buildings, transmission towers, etc. Thus, the successful completion of the second project, which has as its goal the development, implementation, and analysis of efficient and accurate computational methods, would have great impact on these and other applications.
有限元方法通常是确定偏微分方程组(PDE)近似解的首选方法,也是分析最彻底的方法。然而,在设置非线性双曲守恒律时,例如对于可压缩、无粘流和许多其他应用,情况并非如此。第一个项目的目标是为这种环境开发稳定、高效和准确的有限元方法。它涉及到分层有限元基础(HFEB)的使用。所使用的原理类似于定义光谱粘度方法的原理。目标是保持有限元离散的完全精度,同时抑制不需要的和不稳定的振荡,至少远离不连续。与标准有限元基和谱基相比,HFEBs具有重要的优势。HFEBs固有的比例分离(但标准碱基完全不存在)允许选择性地将人工粘度仅应用于离散溶液的高频成分。另一方面,针对最精细网格级别定义的HFEB函数在本地得到支持。这使得很容易识别不连续的位置(使用谱基很难做到这一点),这反过来又使得网格细化策略的有效实施和人工扩散的空间选择性应用成为可能。所有这些令人向往的特征使得发展稳定的、高精度的双曲型守恒律方法成为可能。将对多维双曲型守恒律进行分析和计算研究。在需要回答的重要算法问题中,如何最佳地选择频率和空间相关的人工粘性系数,以及如何有效地实现高阶HFEB。第二个项目研究了双曲偏微分方程组的精确可控性问题,这些问题影响了振动结构的稳定性和空气动力学引起的噪声的降低。一些初步的研究已经为一维和几何简单的二维波动方程问题提供了有效的有限差分算法。算法的基础是离散波动方程和初始条件和终值条件,以产生和欠定线性系统。该系统作为对优化问题的约束,该优化问题的定义是为了提取可控性问题的特定解。与以前的方法相比,新方法不需要正则化来获得收敛的逼近。建议的工作包括将新的算法方法扩展到有限元设置,以便可以处理更复杂和更逼真的几何。还将考虑将变系数方程和双曲型偏微分方程组的推广,例如线弹性方程。算法研究将与基于优化的方法的收敛性质的分析相辅相成。所提出的项目与许多应用中的重要问题直接相关,因此它们的完成将对如何解决这些问题产生重大影响。例如,尽管已经投入了巨大的努力来开发超音速流动的计算技术,但仍然需要开发可用于一般几何形状(如飞机周围的流动)的高精度方法。第一个提出的项目就是这个目标,它的成功完成将直接影响航空航天、核、地球物理等领域解决问题的方式。此外,对于控制结构的不稳定运动或降低发动机产生的噪声的设置,现有的算法很少,尽管这种设置与桥梁、飞机、建筑物、传输塔等的设计问题直接相关。因此,第二个项目的成功完成将对这些和其他应用产生重大影响。第二个项目的目标是开发、实施和分析高效和准确的计算方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Max Gunzburger其他文献

Pinning effects in two-band superconductors
  • DOI:
    10.1016/j.physc.2018.10.004
  • 发表时间:
    2018-12-15
  • 期刊:
  • 影响因子:
  • 作者:
    K. Chad Sockwell;Max Gunzburger;Janet Peterson
  • 通讯作者:
    Janet Peterson
A least-squares finite element method for a nonlinear Stokes problem in glaciology
  • DOI:
    10.1016/j.camwa.2015.11.001
  • 发表时间:
    2016-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Irene Sonja Monnesland;Eunjung Lee;Max Gunzburger;Ryeongkyung Yoon
  • 通讯作者:
    Ryeongkyung Yoon
An end-to-end deep learning method for solving nonlocal Allen–Cahn and Cahn–Hilliard phase-field models
一种用于求解非局部 Allen–Cahn 和 Cahn–Hilliard 相场模型的端到端深度学习方法
An Improved Discrete Least-Squares/Reduced-Basis Method for Parameterized Elliptic PDEs
  • DOI:
    10.1007/s10915-018-0661-6
  • 发表时间:
    2018-02-27
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Max Gunzburger;Michael Schneier;Clayton Webster;Guannan Zhang
  • 通讯作者:
    Guannan Zhang
A generalized nonlocal vector calculus

Max Gunzburger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Max Gunzburger', 18)}}的其他基金

Collaborative Research: Hybrid Fluid-Structure Interaction Material Point Method with applications to Large Deformation Problems in Hemodynamics
合作研究:混合流固耦合质点法及其在血流动力学大变形问题中的应用
  • 批准号:
    1912705
  • 财政年份:
    2019
  • 资助金额:
    $ 16.69万
  • 项目类别:
    Standard Grant
Workshop on Quantification of Uncertainty: Improving Efficiency and Technology
不确定性量化研讨会:提高效率和技术
  • 批准号:
    1707658
  • 财政年份:
    2017
  • 资助金额:
    $ 16.69万
  • 项目类别:
    Standard Grant
Algorithms and modeling for nonlocal models of diffusion and mechanics and for plasmas
扩散和力学非局部模型以及等离子体的算法和建模
  • 批准号:
    1315259
  • 财政年份:
    2013
  • 资助金额:
    $ 16.69万
  • 项目类别:
    Continuing Grant
Discrete and continuous nonlocal material models and their coupling
离散和连续非局部材料模型及其耦合
  • 批准号:
    1013845
  • 财政年份:
    2010
  • 资助金额:
    $ 16.69万
  • 项目类别:
    Standard Grant
Uncertainty Quantification for Systems Governed by Partial Differential Equations; May 2010; Edinburgh, Scotland
偏微分方程控制系统的不确定性量化;
  • 批准号:
    0932948
  • 财政年份:
    2009
  • 资助金额:
    $ 16.69万
  • 项目类别:
    Standard Grant
CMG Collaborative Proposal: Multiphysics and multiscale modeling, computations, and experiments for Karst aquifers
CMG 协作提案:喀斯特含水层的多物理场和多尺度建模、计算和实验
  • 批准号:
    0620035
  • 财政年份:
    2006
  • 资助金额:
    $ 16.69万
  • 项目类别:
    Standard Grant
Collaborative Proposal: A Geometric Method for Image Registration
协作提案:图像配准的几何方法
  • 批准号:
    0612389
  • 财政年份:
    2006
  • 资助金额:
    $ 16.69万
  • 项目类别:
    Standard Grant
Information Technology Research (ITR): Building the Tree of Life -- A National Resource for Phyloinformatics and Computational Phylogenetics
信息技术研究(ITR):构建生命之树——系统信息学和计算系统发育学的国家资源
  • 批准号:
    0331495
  • 财政年份:
    2003
  • 资助金额:
    $ 16.69万
  • 项目类别:
    Cooperative Agreement
Centroidal Voronoi Tessellations: Algorithms, Applications, and Theory
质心 Voronoi 曲面细分:算法、应用和理论
  • 批准号:
    9988303
  • 财政年份:
    2000
  • 资助金额:
    $ 16.69万
  • 项目类别:
    Standard Grant
Recent Trends and Advances in PDEs and Numerical PDEs
偏微分方程和数值偏微分方程的最新趋势和进展
  • 批准号:
    9804748
  • 财政年份:
    1998
  • 资助金额:
    $ 16.69万
  • 项目类别:
    Standard Grant

相似国自然基金

毛竹MLE(mariner-like element)转座酶催化机理研究
  • 批准号:
    LZ19C160001
  • 批准年份:
    2018
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Continuous finite element methods for under resolved turbulence in compressible flow
可压缩流中未解析湍流的连续有限元方法
  • 批准号:
    EP/X042650/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.69万
  • 项目类别:
    Research Grant
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
  • 批准号:
    2109949
  • 财政年份:
    2023
  • 资助金额:
    $ 16.69万
  • 项目类别:
    Standard Grant
Structure-Preserving Finite Element Methods for Incompressible Flow on Smooth Domains and Surfaces
光滑域和表面上不可压缩流动的保结构有限元方法
  • 批准号:
    2309425
  • 财政年份:
    2023
  • 资助金额:
    $ 16.69万
  • 项目类别:
    Standard Grant
Developments and Applications of Numerical Verification Methods for Finite Element Approximation of Differential Equations
微分方程有限元逼近数值验证方法的发展与应用
  • 批准号:
    23K03232
  • 财政年份:
    2023
  • 资助金额:
    $ 16.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Finite element methods for Boltzmann neutron transport equation on polygonal and polyhedral meshes
多边形和多面体网格上玻尔兹曼中子输运方程的有限元方法
  • 批准号:
    2887026
  • 财政年份:
    2023
  • 资助金额:
    $ 16.69万
  • 项目类别:
    Studentship
Analysis and Novel Finite Element Methods for Elliptic Equations with Complex Boundary Conditions
复杂边界条件椭圆方程的分析和新颖的有限元方法
  • 批准号:
    2208321
  • 财政年份:
    2022
  • 资助金额:
    $ 16.69万
  • 项目类别:
    Standard Grant
Structure-Preserving Hybrid Finite Element Methods
保结构混合有限元方法
  • 批准号:
    2208551
  • 财政年份:
    2022
  • 资助金额:
    $ 16.69万
  • 项目类别:
    Standard Grant
Collaborative Research: Physics-Preserving Adaptive Finite Element Methods for Thermo-Poroelasticity
合作研究:热多孔弹性的物理保持自适应有限元方法
  • 批准号:
    2208402
  • 财政年份:
    2022
  • 资助金额:
    $ 16.69万
  • 项目类别:
    Standard Grant
Collaborative Research: Physics-Preserving Adaptive Finite Element Methods for Thermo-Poroelasticity
合作研究:热多孔弹性的物理保持自适应有限元方法
  • 批准号:
    2208426
  • 财政年份:
    2022
  • 资助金额:
    $ 16.69万
  • 项目类别:
    Standard Grant
Computational Relativistic Astrophysics via Space-Time Discontinuous Galerkin Finite Element Methods
基于时空不连续伽辽金有限元方法的计算相对论天体物理学
  • 批准号:
    RGPIN-2017-04581
  • 财政年份:
    2022
  • 资助金额:
    $ 16.69万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了