CMG Collaborative Proposal: Multiphysics and multiscale modeling, computations, and experiments for Karst aquifers
CMG 协作提案:喀斯特含水层的多物理场和多尺度建模、计算和实验
基本信息
- 批准号:0620035
- 负责人:
- 金额:$ 63.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-15 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Karst aquifiers represent a very significant source of water for public and private use. A Karst aquifer, in addition to a porous limestone matrix, typically has large cavernous conduits that are known to largely control groundwater flow and contaminant transport within the aquifer. We will develop a new modeling approach for water flow and contaminant transport in conduit/matrix systems. The flow in the conduits will be described by the Navier-Stokes equations and that in the matrix by Darcy's law. Convection-diffusion equations are used to describe the solute transport in the two regions. The conditions applied at the conduit/matrix interface are novel. We will subject the new Navier-Stokes/Darcy model to rigorous mathematical analyses, studying such issues as existence of solutions and continuous dependence on data. This represents the first such study of this kind. Analyses will also be used to take advantage of the multiscale character of flows in Karst aquifiers to derive fully justified model simplifications that will result in less costly computational algorithms. We will also develop mixed Galerkin and least-squares finite element methods for the coupled Navier-Stokes/ Darcy model along with a coupled convection-diffusion model for the transport of contaminants. Experiments will be a crucial aspect of the proposed project. They will be used to obtain information about flows and contaminant migration in conduit/matrix systems that can not only be useful to water resource managers and policy makers, but also for the development and validation of mathematical models and computational algorithms.Certainly, advances in our quantitative knowledge of Karst aquifers will greatly help in their administration, including the delineation of source-water protection areas for public water supplies and the design of monitoring programs to evaluate the residence and fate of contaminant plumes. More generally, the methodologies we will produce can also impact other underground fluid flow problems including some arising in the petroleum industry. The proposed project will provide a vehicle for the bona fide interdisciplinary training of students and postdoctoral researchers. They will gain the ability to make accurate quantitative assessments of aquifiers and thus can provide industrial administrators and governmental officials with the information they need to make sound policy decisions.
岩溶含水层是公共和私人使用的一个非常重要的水源。岩溶含水层,除了多孔的石灰岩基质,通常有大的洞穴状管道,已知在很大程度上控制地下水流动和污染物在含水层内的运输。我们将开发一种新的管道/基质系统中水流和污染物传输的建模方法。管道中的流动将由Navier-Stokes方程描述,而矩阵中的流动将由达西定律描述。对流扩散方程被用来描述在两个区域中的溶质运移。在导管/基质界面处施加的条件是新颖的。我们将对新的Navier-Stokes/Darcy模型进行严格的数学分析,研究解的存在性和对数据的连续依赖性等问题。这是此类研究的第一次。分析也将被用来利用喀斯特蓄水层流量的多尺度特性,以获得充分合理的模型简化,这将导致成本较低的计算算法。我们也将发展混合Galerkin和最小二乘有限元法的耦合Navier-Stokes/ Darcy模型沿着与耦合对流扩散模型的污染物的传输。 实验将是拟议项目的一个关键方面。它们将被用来获得有关管道/基质系统中的流动和污染物迁移的信息,这些信息不仅对水资源管理者和政策制定者有用,而且对数学模型和计算算法的开发和验证也有用。包括划定公共供水水源保护区和设计监测方案,以评估污染物羽流的驻留和归宿。更一般地说,我们将产生的方法也可以影响其他地下流体流动问题,包括石油工业中出现的一些问题。拟议的项目将为学生和博士后研究人员提供真正的跨学科培训。他们将获得对蓄水层进行准确定量评估的能力,从而可以为工业管理人员和政府官员提供做出合理政策决定所需的信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Max Gunzburger其他文献
Pinning effects in two-band superconductors
- DOI:
10.1016/j.physc.2018.10.004 - 发表时间:
2018-12-15 - 期刊:
- 影响因子:
- 作者:
K. Chad Sockwell;Max Gunzburger;Janet Peterson - 通讯作者:
Janet Peterson
A least-squares finite element method for a nonlinear Stokes problem in glaciology
- DOI:
10.1016/j.camwa.2015.11.001 - 发表时间:
2016-06-01 - 期刊:
- 影响因子:
- 作者:
Irene Sonja Monnesland;Eunjung Lee;Max Gunzburger;Ryeongkyung Yoon - 通讯作者:
Ryeongkyung Yoon
An end-to-end deep learning method for solving nonlocal Allen–Cahn and Cahn–Hilliard phase-field models
一种用于求解非局部 Allen–Cahn 和 Cahn–Hilliard 相场模型的端到端深度学习方法
- DOI:
10.1016/j.cma.2024.117721 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:7.300
- 作者:
Yuwei Geng;Olena Burkovska;Lili Ju;Guannan Zhang;Max Gunzburger - 通讯作者:
Max Gunzburger
An Improved Discrete Least-Squares/Reduced-Basis Method for Parameterized Elliptic PDEs
- DOI:
10.1007/s10915-018-0661-6 - 发表时间:
2018-02-27 - 期刊:
- 影响因子:3.300
- 作者:
Max Gunzburger;Michael Schneier;Clayton Webster;Guannan Zhang - 通讯作者:
Guannan Zhang
A generalized nonlocal vector calculus
- DOI:
10.1007/s00033-015-0514-1 - 发表时间:
2015-03-25 - 期刊:
- 影响因子:1.600
- 作者:
Bacim Alali;Kuo Liu;Max Gunzburger - 通讯作者:
Max Gunzburger
Max Gunzburger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Max Gunzburger', 18)}}的其他基金
Collaborative Research: Hybrid Fluid-Structure Interaction Material Point Method with applications to Large Deformation Problems in Hemodynamics
合作研究:混合流固耦合质点法及其在血流动力学大变形问题中的应用
- 批准号:
1912705 - 财政年份:2019
- 资助金额:
$ 63.33万 - 项目类别:
Standard Grant
Workshop on Quantification of Uncertainty: Improving Efficiency and Technology
不确定性量化研讨会:提高效率和技术
- 批准号:
1707658 - 财政年份:2017
- 资助金额:
$ 63.33万 - 项目类别:
Standard Grant
Algorithms and modeling for nonlocal models of diffusion and mechanics and for plasmas
扩散和力学非局部模型以及等离子体的算法和建模
- 批准号:
1315259 - 财政年份:2013
- 资助金额:
$ 63.33万 - 项目类别:
Continuing Grant
Discrete and continuous nonlocal material models and their coupling
离散和连续非局部材料模型及其耦合
- 批准号:
1013845 - 财政年份:2010
- 资助金额:
$ 63.33万 - 项目类别:
Standard Grant
Uncertainty Quantification for Systems Governed by Partial Differential Equations; May 2010; Edinburgh, Scotland
偏微分方程控制系统的不确定性量化;
- 批准号:
0932948 - 财政年份:2009
- 资助金额:
$ 63.33万 - 项目类别:
Standard Grant
Collaborative Proposal: A Geometric Method for Image Registration
协作提案:图像配准的几何方法
- 批准号:
0612389 - 财政年份:2006
- 资助金额:
$ 63.33万 - 项目类别:
Standard Grant
Information Technology Research (ITR): Building the Tree of Life -- A National Resource for Phyloinformatics and Computational Phylogenetics
信息技术研究(ITR):构建生命之树——系统信息学和计算系统发育学的国家资源
- 批准号:
0331495 - 财政年份:2003
- 资助金额:
$ 63.33万 - 项目类别:
Cooperative Agreement
Finite Element Methods for Two Problems for Hyperbolic Partial Differential Equations
双曲偏微分方程两个问题的有限元方法
- 批准号:
0308845 - 财政年份:2003
- 资助金额:
$ 63.33万 - 项目类别:
Standard Grant
Centroidal Voronoi Tessellations: Algorithms, Applications, and Theory
质心 Voronoi 曲面细分:算法、应用和理论
- 批准号:
9988303 - 财政年份:2000
- 资助金额:
$ 63.33万 - 项目类别:
Standard Grant
Recent Trends and Advances in PDEs and Numerical PDEs
偏微分方程和数值偏微分方程的最新趋势和进展
- 批准号:
9804748 - 财政年份:1998
- 资助金额:
$ 63.33万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Time-Sharing Experiments for the Social Sciences (TESS): Proposal for Renewed Support, 2020-2023
合作研究:社会科学分时实验(TESS):2020-2023 年更新支持提案
- 批准号:
2424057 - 财政年份:2024
- 资助金额:
$ 63.33万 - 项目类别:
Continuing Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
- 批准号:
2309022 - 财政年份:2024
- 资助金额:
$ 63.33万 - 项目类别:
Standard Grant
Collaborative proposal: Workshop on ecological impacts of solar radiation management geoengineering; February, 2020; Port Jefferson, NY; October, 2020; Minneapolis, MN
合作提案:太阳辐射管理地球工程的生态影响研讨会;
- 批准号:
2343519 - 财政年份:2023
- 资助金额:
$ 63.33万 - 项目类别:
Standard Grant
Collaborative Proposal: How to Gel Oil (or Water) in an Immiscible Oil-Water Mixture: A Systematic Study of Phase-Selective Gelation
合作提案:如何在不混溶的油水混合物中胶凝油(或水):相选择性胶凝的系统研究
- 批准号:
2226533 - 财政年份:2023
- 资助金额:
$ 63.33万 - 项目类别:
Standard Grant
Collaborative Proposal: SaTC: Frontiers: Center for Distributed Confidential Computing (CDCC)
协作提案:SaTC:前沿:分布式机密计算中心 (CDCC)
- 批准号:
2401496 - 财政年份:2023
- 资助金额:
$ 63.33万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: SaTC: CORE: 2.0 Vision Proposal
协作研究:会议:SaTC:核心:2.0 愿景提案
- 批准号:
2316833 - 财政年份:2023
- 资助金额:
$ 63.33万 - 项目类别:
Standard Grant
Collaborative Research: Conference: SaTC: CORE: 2.0 Vision Proposal
协作研究:会议:SaTC:核心:2.0 愿景提案
- 批准号:
2316832 - 财政年份:2023
- 资助金额:
$ 63.33万 - 项目类别:
Standard Grant
Collaborative Research: Research Infrastructure: EPIIC: Collaborative Proposal: LIGHT UP: Leveraging Innovation to Grow High Tech and University Partnerships
合作研究: 研究基础设施: EPIIC: 合作提案: LIGHT UP: 利用创新发展高科技和大学合作伙伴关系
- 批准号:
2331570 - 财政年份:2023
- 资助金额:
$ 63.33万 - 项目类别:
Standard Grant
Collaborative Research: Research Infrastructure: EPIIC: Collaborative Proposal: LIGHT UP: Leveraging Innovation to Grow High Tech and University Partnerships
合作研究: 研究基础设施: EPIIC: 合作提案: LIGHT UP: 利用创新发展高科技和大学合作伙伴关系
- 批准号:
2331572 - 财政年份:2023
- 资助金额:
$ 63.33万 - 项目类别:
Standard Grant
Collaborative Research: Research Infrastructure: EPIIC: Collaborative Proposal: LIGHT UP: Leveraging Innovation to Grow High Tech and University Partnerships
合作研究: 研究基础设施: EPIIC: 合作提案: LIGHT UP: 利用创新发展高科技和大学合作伙伴关系
- 批准号:
2331569 - 财政年份:2023
- 资助金额:
$ 63.33万 - 项目类别:
Standard Grant