Collaborative Research: Hybrid Fluid-Structure Interaction Material Point Method with applications to Large Deformation Problems in Hemodynamics
合作研究:混合流固耦合质点法及其在血流动力学大变形问题中的应用
基本信息
- 批准号:1912705
- 负责人:
- 金额:$ 10.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Heart valve associated issues in the human organism are the cause of cardiac arrest and heart failure, which may have devastating consequences on a person's health and even lead to death. While not necessarily fatal, pathologies associated with leg vein valves can nevertheless cause severe distress to the people affected and have a negative impact on their life with possibly major complications. For the treatment of valve associated diseases, the most common practice nowadays is the replacement of the malfunctioning valve with a prosthetic device. Unfortunately, prosthetic valves have issues with long term durability and post-implantation complications. Given the necessity of improving the design and selection of existing prosthetic valves, computational methodologies are becoming a valuable tool. The nature of blood flow inside a human valve renders the modeling problem considerably challenging from the mathematical and computational standpoints, as multiple physical phenomena mutually interact. Specifically, the major challenges are the large structural displacements experienced by the valve leaflets, while preserving accurate description of the hydrodynamic force at the fluid-solid interface. The focus of this project is on developing new fluid-structure interaction methodologies with specific interest in the case of large deformations. The important insight provided in this project will enable future valve design optimization while avoiding costly empirical design iterations. In addition to the obvious potential impact on society, the proposed project will be useful to many other applications in science and engineering, and also have beneficial impact on the training, education, and careers of junior researchers in an important, exciting, and mathematically, computationally, and societally impactful area of research. This project will support 2 graduate students per year for each year of the three year project.This project is about the development, analysis, and implementation of novel computational techniques for the coupling of finite element methods (FEMs) to material point methods (MPMs) in fluid-structure interaction (FSI) problems. The use of different discretization techniques for the study of multiscale and multiphysics problems is a powerful tool for computational simulations. For instance, one-dimensional models are coupled with multi-dimensional models for computational cost reduction, or FEMs are coupled with finite volume methods to exploit the advantages of the algorithmic and mathematical features of these two methods. With the same idea, the coupling of FEM with MPM represents a promising combination, if different deformation regimes occur within the dynamical regime of a physical model. As a matter of fact, the FEM reaches its best accuracy for small deformations whereas the MPM mixed Eulerian-Lagrangian formulation becomes beneficial when large deformations occur. FEM-MPM coupling has, in fact, been studied only by very few authors, including the PIs, and the coupling of an FSI framework with an MPM approach is yet to be explored. The use of the material point methodology would avoid the mesh entanglement issues that plague many existing FSI methods. To design the desired coupling approach, preliminary work is needed. First, the coupling between an MPM solid body immersed in an FEM fluid will be addressed, using benchmark problems from the FSI literature. At the same time, the mechanical properties of a solid body discretized with the mixed FSI-MPM approach will be studied and the accuracy of the method will be investigated using the Taylor bar test in which a cylinder impacts a rigid wall. Then, the knowledge gained from the preparatory work will be used to realize an FSI-MPM coupling methodology for biological valves, with the valve leaflets modeled with the MPM and the blood vessel and blood flow described in an FEM-FSI framework. Appropriate solvers and preconditioners will also be selected and studied because the discretized nonlinear and linear systems will likely be large and highly coupled. Lastly, the FSI-MPM coupling approach will also be applied for the simulations of stented arteries, with the stent described using the MPM. In this way, complex meshing procedure for the stent can be avoided, while capturing its dynamical behavior. The computational techniques developed within the proposed research will be applicable and prove to be invaluable tools for a broad spectrum of applications such as human valve fluid and structural dynamics, aerospace and civil engineering problems, dam breaking, and airfoil design, to name a few. All our findings will be implemented in FEMuS, an open source library written in C++ language, freely downloadable online. Our effort will hopefully contribute to the standardization of novel computational techniques that are currently available only in research software. Nevertheless, researchers from all over the world can potentially access our findings and join us in this effort, with a substantial speed up in the standardization procedure.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
心脏瓣膜相关的问题在人体内是心脏骤停和心力衰竭的原因,这可能会对一个人的健康造成毁灭性的后果,甚至导致死亡。虽然不一定致命,但与腿静脉瓣膜相关的病理学可能会对受影响的人造成严重的痛苦,并对他们的生活产生负面影响,可能会出现严重的并发症。对于瓣膜相关疾病的治疗,目前最常见的做法是用假体装置置换故障瓣膜。不幸的是,人工瓣膜具有长期耐久性和植入后并发症的问题。考虑到改进现有人工瓣膜的设计和选择的必要性,计算方法正成为一种有价值的工具。人体瓣膜内血流的性质使得建模问题从数学和计算的角度来看具有相当大的挑战性,因为多个物理现象相互作用。具体而言,主要的挑战是瓣膜小叶经历的大的结构位移,同时保持流体-固体界面处的流体动力的准确描述。该项目的重点是开发新的流体-结构相互作用方法,特别是在大变形的情况下。该项目提供的重要见解将使未来的阀门设计优化,同时避免昂贵的经验设计迭代。除了对社会的明显潜在影响外,该项目还将对科学和工程领域的许多其他应用有用,并对初级研究人员的培训,教育和职业生涯产生有益的影响,这些研究领域是一个重要的,令人兴奋的,数学,计算和社会影响力的研究领域。本项目将在三年的时间里每年资助2名研究生。本项目是关于流体-结构相互作用(FSI)问题中有限元法(FEM)与材料点法(MPM)耦合的新型计算技术的开发、分析和实施。使用不同的离散技术研究多尺度和多物理场问题是一个强大的工具,计算模拟。例如,一维模型与多维模型耦合以降低计算成本,或者FEM与有限体积方法耦合以利用这两种方法的算法和数学特征的优点。基于同样的思想,如果在物理模型的动力学区域内出现不同的变形区域,则有限元与MPM的耦合代表了一种有希望的组合。事实上,有限元法在小变形时达到最佳精度,而MPM混合欧拉-拉格朗日公式在大变形时变得有益。FEM-MPM耦合,事实上,只有极少数的作者,包括PI的研究,和耦合的FSI框架与MPM的方法还有待探讨。 材料点方法的使用将避免困扰许多现有FSI方法的网格缠结问题。为了设计所需的耦合方法,需要进行前期工作。首先,MPM固体之间的耦合浸没在FEM流体将得到解决,使用FSI文献的基准问题。同时,将研究与混合FSI-MPM方法离散化的固体的力学性能,并将使用泰勒杆试验,其中一个圆柱体撞击刚性壁的方法的精度进行调查。然后,从准备工作中获得的知识将用于实现生物瓣膜的FSI-MPM耦合方法,用MPM建模瓣膜小叶,并在FEM-FSI框架中描述血管和血流。适当的求解器和预处理器也将被选择和研究,因为离散化的非线性和线性系统将可能是大的和高度耦合的。最后,FSI-MPM耦合方法也将应用于支架动脉的模拟,使用MPM描述支架。通过这种方式,可以避免支架的复杂网格化过程,同时捕获其动态行为。 在拟议的研究中开发的计算技术将是适用的,并被证明是一个广泛的应用,如人类阀门流体和结构动力学,航空航天和土木工程问题,溃坝和翼型设计,仅举几例,是非常宝贵的工具。我们所有的研究结果都将在FEMuS中实现,FEMuS是一个用C++语言编写的开源库,可以在线免费下载。我们的努力将有望有助于标准化的新的计算技术,目前只有在研究软件。尽管如此,来自世界各地的研究人员都可以访问我们的研究结果,并加入我们的努力,大大加快标准化程序。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Max Gunzburger其他文献
Pinning effects in two-band superconductors
- DOI:
10.1016/j.physc.2018.10.004 - 发表时间:
2018-12-15 - 期刊:
- 影响因子:
- 作者:
K. Chad Sockwell;Max Gunzburger;Janet Peterson - 通讯作者:
Janet Peterson
A least-squares finite element method for a nonlinear Stokes problem in glaciology
- DOI:
10.1016/j.camwa.2015.11.001 - 发表时间:
2016-06-01 - 期刊:
- 影响因子:
- 作者:
Irene Sonja Monnesland;Eunjung Lee;Max Gunzburger;Ryeongkyung Yoon - 通讯作者:
Ryeongkyung Yoon
An end-to-end deep learning method for solving nonlocal Allen–Cahn and Cahn–Hilliard phase-field models
一种用于求解非局部 Allen–Cahn 和 Cahn–Hilliard 相场模型的端到端深度学习方法
- DOI:
10.1016/j.cma.2024.117721 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:7.300
- 作者:
Yuwei Geng;Olena Burkovska;Lili Ju;Guannan Zhang;Max Gunzburger - 通讯作者:
Max Gunzburger
An Improved Discrete Least-Squares/Reduced-Basis Method for Parameterized Elliptic PDEs
- DOI:
10.1007/s10915-018-0661-6 - 发表时间:
2018-02-27 - 期刊:
- 影响因子:3.300
- 作者:
Max Gunzburger;Michael Schneier;Clayton Webster;Guannan Zhang - 通讯作者:
Guannan Zhang
A generalized nonlocal vector calculus
- DOI:
10.1007/s00033-015-0514-1 - 发表时间:
2015-03-25 - 期刊:
- 影响因子:1.600
- 作者:
Bacim Alali;Kuo Liu;Max Gunzburger - 通讯作者:
Max Gunzburger
Max Gunzburger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Max Gunzburger', 18)}}的其他基金
Workshop on Quantification of Uncertainty: Improving Efficiency and Technology
不确定性量化研讨会:提高效率和技术
- 批准号:
1707658 - 财政年份:2017
- 资助金额:
$ 10.04万 - 项目类别:
Standard Grant
Algorithms and modeling for nonlocal models of diffusion and mechanics and for plasmas
扩散和力学非局部模型以及等离子体的算法和建模
- 批准号:
1315259 - 财政年份:2013
- 资助金额:
$ 10.04万 - 项目类别:
Continuing Grant
Discrete and continuous nonlocal material models and their coupling
离散和连续非局部材料模型及其耦合
- 批准号:
1013845 - 财政年份:2010
- 资助金额:
$ 10.04万 - 项目类别:
Standard Grant
Uncertainty Quantification for Systems Governed by Partial Differential Equations; May 2010; Edinburgh, Scotland
偏微分方程控制系统的不确定性量化;
- 批准号:
0932948 - 财政年份:2009
- 资助金额:
$ 10.04万 - 项目类别:
Standard Grant
CMG Collaborative Proposal: Multiphysics and multiscale modeling, computations, and experiments for Karst aquifers
CMG 协作提案:喀斯特含水层的多物理场和多尺度建模、计算和实验
- 批准号:
0620035 - 财政年份:2006
- 资助金额:
$ 10.04万 - 项目类别:
Standard Grant
Collaborative Proposal: A Geometric Method for Image Registration
协作提案:图像配准的几何方法
- 批准号:
0612389 - 财政年份:2006
- 资助金额:
$ 10.04万 - 项目类别:
Standard Grant
Information Technology Research (ITR): Building the Tree of Life -- A National Resource for Phyloinformatics and Computational Phylogenetics
信息技术研究(ITR):构建生命之树——系统信息学和计算系统发育学的国家资源
- 批准号:
0331495 - 财政年份:2003
- 资助金额:
$ 10.04万 - 项目类别:
Cooperative Agreement
Finite Element Methods for Two Problems for Hyperbolic Partial Differential Equations
双曲偏微分方程两个问题的有限元方法
- 批准号:
0308845 - 财政年份:2003
- 资助金额:
$ 10.04万 - 项目类别:
Standard Grant
Centroidal Voronoi Tessellations: Algorithms, Applications, and Theory
质心 Voronoi 曲面细分:算法、应用和理论
- 批准号:
9988303 - 财政年份:2000
- 资助金额:
$ 10.04万 - 项目类别:
Standard Grant
Recent Trends and Advances in PDEs and Numerical PDEs
偏微分方程和数值偏微分方程的最新趋势和进展
- 批准号:
9804748 - 财政年份:1998
- 资助金额:
$ 10.04万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334039 - 财政年份:2024
- 资助金额:
$ 10.04万 - 项目类别:
Continuing Grant
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334040 - 财政年份:2024
- 资助金额:
$ 10.04万 - 项目类别:
Continuing Grant
Collaborative Research: Catholyte Molecular Design For Non-aqueous Mg-organic Hybrid Redox Flow Batteries
合作研究:非水镁有机混合氧化还原液流电池的阴极电解液分子设计
- 批准号:
2419938 - 财政年份:2024
- 资助金额:
$ 10.04万 - 项目类别:
Standard Grant
NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
- 批准号:
2327702 - 财政年份:2023
- 资助金额:
$ 10.04万 - 项目类别:
Standard Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
- 批准号:
2332442 - 财政年份:2023
- 资助金额:
$ 10.04万 - 项目类别:
Standard Grant
CPS Medium: Collaborative Research: Physics-Informed Learning and Control of Passive and Hybrid Conditioning Systems in Buildings
CPS 媒介:协作研究:建筑物中被动和混合空调系统的物理信息学习和控制
- 批准号:
2241796 - 财政年份:2023
- 资助金额:
$ 10.04万 - 项目类别:
Standard Grant
Collaborative Research: Electronic Analog & Hybrid Computing for Power & Energy Systems
合作研究:电子模拟
- 批准号:
2305431 - 财政年份:2023
- 资助金额:
$ 10.04万 - 项目类别:
Standard Grant
Collaborative Research: Electronic Analog & Hybrid Computing for Power & Energy Systems
合作研究:电子模拟
- 批准号:
2305432 - 财政年份:2023
- 资助金额:
$ 10.04万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Hybrid Materials for Superfluorescent Quantum Emitters
合作研究:DMREF:超荧光量子发射器的混合材料
- 批准号:
2323803 - 财政年份:2023
- 资助金额:
$ 10.04万 - 项目类别:
Standard Grant
Collaborative Research: New Anodic Catalysts for Water Oxygen Evolution Using Hybrid Solid-State Materials
合作研究:使用混合固态材料用于水析氧的新型阳极催化剂
- 批准号:
2311116 - 财政年份:2023
- 资助金额:
$ 10.04万 - 项目类别:
Standard Grant