Discrete and continuous nonlocal material models and their coupling
离散和连续非局部材料模型及其耦合
基本信息
- 批准号:1013845
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The rational design of materials, the development of accurate and efficient material simulation, design, and control algorithms, and the determination of the response of materials to environments and loads occurring in practice all require an understanding of mechanics at disparate spatial and temporal scales. For this reason, there has been very considerable interest in the development of multiscale material models. A common approach for this purpose is to couple atomistic and continuum models, the first used to accurately resolve defects at small scales, the second to efficiently treat regions lacking defects. For example, many have tried to couple nonlocal molecular dynamics (MD) with local classical continuum elasticity (CE) models with limited success because, for all but the smallest samples, there remains a gap between the scales for which MD is tractable and CE is valid and also because one has to overcome problems arising from the coupling a nonlocal model (MD) to a local one (CE). The project addresses these difficulties by replacing MD with a newly developed variant (QC-QR) of the quasicontinuum (QC) method and CE by the nonlocal peridynamics (PD) continuum model. The QC-QR method approximates the well-known QC method by replacing the sums that determine the force on each active particle in the QC method by shorter sums defined using a ?quadrature? rule. The PD method does not involve spatial derivatives so that it can accurately account for defects at relatively small scales. The gains in efficiency effected by the QC-QR method relative to MD and QC and the gains in the range of validity effected by PD relative to CE, added to the fact that both QC-QR and PD are nonlocal models, means that a coupled QC-QR/PD model has the potential of overcoming the difficulties encountered for coupled MD/CE models that were alluded to above. In fact, QC-QR and PD are themselves multiscale material models, so that one significant aspect of the project is to explore the limits of their use as multiscale mono-models for materials. The project also considers the multiscale composite QC-QR/PD model whose efficacy is determined through computational and analytical studies. Likewise, the use of the QC-QR/PD coupled model as a bridge between MD and CE is considered.The rational design of new materials and their use in applications require an understanding of mechanics at disparate spatial and temporal scales ranging from that of atoms to that of the size of aircraft and bridges. For this reason, there has been very considerable interest in the development of multiscale material models that are valid over all that range of scales. Previous attempts at coupling models that are valid over limited scales so as to produce a composite model that is valid at all scales have not met with complete success because of several reasons, including the fact that a gap exists between the range of validity of some models and the range of tractability of others. Our goal is to produce a model for the mechanics of materials that is valid and tractable over a wider range of scales than can be handled by models in current use. We have participated in the development of new models, one that extends the range of validity of models that can operate at the large-end of the scales and one that improves the efficiency of models that operate at the atomistic scale. We make further studies of these models to determine more precisely their range of validity and tractability. We then study, through mathematical and computational means, how best to couple the two models and to quantify the resulting improvements over existing approaches. Finally, we test the new composite model by applying it to the solution of a series of test problems.
材料的合理设计,准确和有效的材料模拟,设计和控制算法的发展,以及材料对环境和实际发生的负载的响应的确定,都需要在不同的空间和时间尺度上理解力学。由于这个原因,人们对多尺度材料模型的发展产生了相当大的兴趣。为此目的的一个常见的方法是耦合原子和连续模型,第一个用于精确地解决小尺度的缺陷,第二个有效地处理缺乏缺陷的区域。例如,许多人试图将非局部分子动力学(MD)与局部经典连续弹性(CE)模型结合起来,但成功有限,因为除了最小的样本外,MD易于处理的尺度与CE有效的尺度之间仍然存在差距,还因为必须克服将非局部模型(MD)与局部模型(CE)结合起来所产生的问题。该项目解决了这些困难,取代MD与新开发的变种(QC-QR)的准连续体(QC)方法和CE的非局部周波(PD)连续体模型。QC-QR方法近似于众所周知的QC方法,通过替换确定在QC方法中的每个活性颗粒上的力的总和,通过使用?求积?统治PD方法不涉及空间导数,因此它可以准确地解释相对较小尺度的缺陷。QC-QR方法相对于MD和QC的效率增益以及PD相对于CE的有效性范围增益,加上QC-QR和PD都是非局部模型的事实,意味着耦合QC-QR/PD模型具有克服上面提到的耦合MD/CE模型遇到的困难的潜力。事实上,QC-QR和PD本身就是多尺度材料模型,因此该项目的一个重要方面是探索它们作为材料的多尺度单模型使用的限制。该项目还考虑了多尺度复合QC-QR/PD模型,其有效性通过计算和分析研究确定。同样,使用的QC-QR/PD耦合模型之间的MD和CE.The新材料的合理设计和它们在应用中的使用需要在不同的空间和时间尺度的力学的理解之间的桥梁从原子的大小的飞机和桥梁。由于这个原因,人们对开发在所有尺度范围内都有效的多尺度材料模型非常感兴趣。以前曾试图将在有限尺度上有效的模型结合起来,以产生一个在所有尺度上都有效的复合模型,但由于几个原因,包括某些模型的有效性范围与其他模型的易处理性范围之间存在差距,这种尝试没有取得完全成功。我们的目标是产生一个模型的材料力学,是有效的,在更广泛的范围内比目前使用的模型可以处理的尺度易处理。我们参与了新模型的开发,其中一个扩展了可以在大尺度上运行的模型的有效性范围,另一个提高了在原子尺度上运行的模型的效率。我们对这些模型进行了进一步的研究,以更精确地确定它们的有效性和易处理性范围。然后,我们研究,通过数学和计算手段,如何最好地耦合这两个模型,并量化所产生的改进现有的方法。最后,我们测试了新的复合模型,将其应用到一系列测试问题的解决方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Max Gunzburger其他文献
Pinning effects in two-band superconductors
- DOI:
10.1016/j.physc.2018.10.004 - 发表时间:
2018-12-15 - 期刊:
- 影响因子:
- 作者:
K. Chad Sockwell;Max Gunzburger;Janet Peterson - 通讯作者:
Janet Peterson
A least-squares finite element method for a nonlinear Stokes problem in glaciology
- DOI:
10.1016/j.camwa.2015.11.001 - 发表时间:
2016-06-01 - 期刊:
- 影响因子:
- 作者:
Irene Sonja Monnesland;Eunjung Lee;Max Gunzburger;Ryeongkyung Yoon - 通讯作者:
Ryeongkyung Yoon
An end-to-end deep learning method for solving nonlocal Allen–Cahn and Cahn–Hilliard phase-field models
一种用于求解非局部 Allen–Cahn 和 Cahn–Hilliard 相场模型的端到端深度学习方法
- DOI:
10.1016/j.cma.2024.117721 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:7.300
- 作者:
Yuwei Geng;Olena Burkovska;Lili Ju;Guannan Zhang;Max Gunzburger - 通讯作者:
Max Gunzburger
An Improved Discrete Least-Squares/Reduced-Basis Method for Parameterized Elliptic PDEs
- DOI:
10.1007/s10915-018-0661-6 - 发表时间:
2018-02-27 - 期刊:
- 影响因子:3.300
- 作者:
Max Gunzburger;Michael Schneier;Clayton Webster;Guannan Zhang - 通讯作者:
Guannan Zhang
A generalized nonlocal vector calculus
- DOI:
10.1007/s00033-015-0514-1 - 发表时间:
2015-03-25 - 期刊:
- 影响因子:1.600
- 作者:
Bacim Alali;Kuo Liu;Max Gunzburger - 通讯作者:
Max Gunzburger
Max Gunzburger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Max Gunzburger', 18)}}的其他基金
Collaborative Research: Hybrid Fluid-Structure Interaction Material Point Method with applications to Large Deformation Problems in Hemodynamics
合作研究:混合流固耦合质点法及其在血流动力学大变形问题中的应用
- 批准号:
1912705 - 财政年份:2019
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Workshop on Quantification of Uncertainty: Improving Efficiency and Technology
不确定性量化研讨会:提高效率和技术
- 批准号:
1707658 - 财政年份:2017
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Algorithms and modeling for nonlocal models of diffusion and mechanics and for plasmas
扩散和力学非局部模型以及等离子体的算法和建模
- 批准号:
1315259 - 财政年份:2013
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Uncertainty Quantification for Systems Governed by Partial Differential Equations; May 2010; Edinburgh, Scotland
偏微分方程控制系统的不确定性量化;
- 批准号:
0932948 - 财政年份:2009
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
CMG Collaborative Proposal: Multiphysics and multiscale modeling, computations, and experiments for Karst aquifers
CMG 协作提案:喀斯特含水层的多物理场和多尺度建模、计算和实验
- 批准号:
0620035 - 财政年份:2006
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Proposal: A Geometric Method for Image Registration
协作提案:图像配准的几何方法
- 批准号:
0612389 - 财政年份:2006
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Information Technology Research (ITR): Building the Tree of Life -- A National Resource for Phyloinformatics and Computational Phylogenetics
信息技术研究(ITR):构建生命之树——系统信息学和计算系统发育学的国家资源
- 批准号:
0331495 - 财政年份:2003
- 资助金额:
$ 33万 - 项目类别:
Cooperative Agreement
Finite Element Methods for Two Problems for Hyperbolic Partial Differential Equations
双曲偏微分方程两个问题的有限元方法
- 批准号:
0308845 - 财政年份:2003
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Centroidal Voronoi Tessellations: Algorithms, Applications, and Theory
质心 Voronoi 曲面细分:算法、应用和理论
- 批准号:
9988303 - 财政年份:2000
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Recent Trends and Advances in PDEs and Numerical PDEs
偏微分方程和数值偏微分方程的最新趋势和进展
- 批准号:
9804748 - 财政年份:1998
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
相似国自然基金
高频数据波动率统计推断、预测与应用
- 批准号:71971118
- 批准年份:2019
- 资助金额:50.0 万元
- 项目类别:面上项目
星载连续波合成孔径雷达信号处理方法研究
- 批准号:61172122
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
连续化悬浮燃烧合成硅基陶瓷粉体的应用基础研究
- 批准号:50372074
- 批准年份:2003
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
3D Printing Proteins for Continuous Flow Biocatalysis and Bioabsorbtion
用于连续流生物催化和生物吸收的 3D 打印蛋白质
- 批准号:
2753054 - 财政年份:2026
- 资助金额:
$ 33万 - 项目类别:
Studentship
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315997 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
PFI-TT: A Novel Wireless Sensor for Continuous Monitoring of Patients with Chronic Diseases
PFI-TT:一种用于持续监测慢性病患者的新型无线传感器
- 批准号:
2345803 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Continuous, Large-scale Manufacturing of Functionalized Silver Nanowire Transparent Conducting Films
功能化银纳米线透明导电薄膜的连续大规模制造
- 批准号:
2422696 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
I-Corps: Centralized, Cloud-Based, Artificial Intelligence (AI) Video Analysis for Enhanced Intubation Documentation and Continuous Quality Control
I-Corps:基于云的集中式人工智能 (AI) 视频分析,用于增强插管记录和持续质量控制
- 批准号:
2405662 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Continuous flow solvothermal synthesis of silver-3d metals nanoalloys for platinum-group-free catalysts
用于无铂族催化剂的银-3D金属纳米合金的连续流动溶剂热合成
- 批准号:
24K17587 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Seismic Performance and Evaluation of Hybrid Frame with CFST Column-continuous Beam Joints
钢管混凝土柱-连续梁节点混合框架抗震性能及评价
- 批准号:
24K17393 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Synthesis and Continuous Manufacture of Novel, High Performing Polymeric Lubricants for the Next Generation of Electric Transportation
用于下一代电动交通的新型高性能聚合物润滑剂的合成和连续制造
- 批准号:
2489089 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Studentship
CAREER: Understanding the Integrated Cyber-Physical Resilience of Continuous Critical Manufacturing
职业:了解连续关键制造的集成网络物理弹性
- 批准号:
2338968 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
CRII: CSR: Adaptive Federated Continuous Learning on Heterogeneous Edge Devices with Unlabeled Data
CRII:CSR:具有未标记数据的异构边缘设备的自适应联合连续学习
- 批准号:
2348279 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant