ITR: A Computational Framework for Observational Science: Data Assimilation Methods and their Application for Understanding North Atlantic Zooplankton Dynamics.

ITR:观测科学的计算框架:数据同化方法及其在理解北大西洋浮游动物动力学中的应用。

基本信息

项目摘要

This project will develop a modular data assimilation system, investigate several algorithms to make data assimilation more efficient, and will apply this system to investigate zooplankton dynamics in the North Atlantic. The goal of data assimilation is to find the value of the control variables (typically, the initial conditions or boundary conditions or model parameters) producing the best agreement between the model and the data. A data assimilation system consists of a forward model representing known dynamics. This model is integrated and the deviation between its predictions and available observations are quantified by a cost function. An adjoint model, representing the inverse of the known dynamics, is then run to determine the dependence of the cost function on the control variables. From the results of the adjoint model, the control variables are adjusted and the entire procedure repeats until the system converges on an answer. Because of the many iterations of the forward/adjoint system are required to find an answer, data assimilation is a computationally intensive process. The proposed data assimilation system will attempt to improve the effciency through parallelization and algorithmic improvements. Specifically, this project will evaluate three standard minimization algorithms and a new algorithm based on multigrid techniques. Using this system, data from the Continous Plankton Recorder survey, the only ongoing basin-wide plankton survey, will be assimilated to provide an accurate, quantitative description of the seasonal and interannual changes of North Atlantic zooplankton populations (especially, Calanus finmarchicus) in the Gulf of Maine and across the entire North Atlantic. This description will provide a better mechanistic understanding of the processes responsible for observed patterns in these populations. Such an understanding is prerequisite for predicting the impact of climate variability and change on zooplankton populations and the ecosystems they support.Broader Impacts: The proposed data assimilation system is a general model for many data assimilation problems including operational oceanography and numerical weather prediction. This project's association with the Cornell Theory Center (CTC) allows a unique opportunity to share its data assimilation system to a wide audience. With the help of CTC staff, a web interface to the system running on CTC's .NET cluster will be built. This interface will allow researchers and students across the world to access a high-performance data assimilation system. The development of the data assimilation system will be integrated into a series of computational tools courses offered at Cornell. This project will also provide research opportunities for both graduate students and undergraduates.
该项目将开发一个模块化数据同化系统,研究几种算法,使数据同化更有效,并将应用该系统研究北大西洋的浮游动物动态。数据同化的目标是找到控制变量(通常是初始条件或边界条件或模型参数)的值,从而在模型和数据之间产生最佳一致性。数据同化系统由代表已知动力学的正演模型组成。该模型是集成的,其预测和可用的观测值之间的偏差量化的成本函数。然后运行表示已知动态的逆的伴随模型以确定成本函数对控制变量的依赖性。根据伴随模型的结果,调整控制变量,重复整个过程,直到系统收敛于一个答案。由于前向/伴随系统需要多次迭代才能找到答案,因此数据同化是一个计算密集型过程。建议的数据同化系统将试图通过并行化和算法改进来提高效率。具体来说,这个项目将评估三个标准的最小化算法和一个新的算法的基础上多重网格技术。利用这一系统,从连续浮游生物记录仪调查,唯一正在进行的全流域浮游生物调查的数据,将被同化,以提供一个准确的,定量的描述北大西洋浮游动物种群(特别是,哲水蚤finmarchicus)在缅因州湾和整个北大西洋的季节性和年际变化。这种描述将提供一个更好的机制的理解负责在这些人群中观察到的模式的过程。这种理解是预测气候变率和变化对浮游动物种群及其所支持的生态系统的影响的先决条件。更广泛的影响:拟议的数据同化系统是许多数据同化问题的通用模型,包括业务海洋学和数值天气预报。该项目与康奈尔理论中心(CTC)的联系为向广大受众分享其数据同化系统提供了一个独特的机会。在反恐委员会工作人员的帮助下,将建立一个在反恐委员会.NET集群上运行的系统的网络界面。该接口将使世界各地的研究人员和学生能够访问高性能的数据同化系统。数据同化系统的开发将被纳入康奈尔大学提供的一系列计算工具课程。该项目还将为研究生和本科生提供研究机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Pershing其他文献

Attributing daily ocean temperatures to anthropogenic climate change
将每日海洋温度归因于人为气候变化
  • DOI:
    10.1088/2752-5295/ad4815
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joseph Giguere;D. Gilford;Andrew Pershing
  • 通讯作者:
    Andrew Pershing

Andrew Pershing的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Pershing', 18)}}的其他基金

Improving Ocean Access for Research and Teaching at the Gulf of Maine Research Institute
改善缅因湾研究所研究和教学的海洋通道
  • 批准号:
    1821061
  • 财政年份:
    2019
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the impact of warming on the structure and function of marine communities
合作研究:了解变暖对海洋群落结构和功能的影响
  • 批准号:
    1851866
  • 财政年份:
    2019
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Standard Grant
Collaborative Proposal: CAMEO: Using interdecadal comparisons to understand trade-offs between abundance and condition in fishery ecosystems
合作提案:CAMEO:利用年代际比较来了解渔业生态系统丰度和条件之间的权衡
  • 批准号:
    1041731
  • 财政年份:
    2010
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Standard Grant
Understanding copepod life-history and diversity using a next-generation zooplankton model
使用下一代浮游动物模型了解桡足类生活史和多样性
  • 批准号:
    0962074
  • 财政年份:
    2010
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Standard Grant
CNH: Collaborative Research: Direct and Indirect Coupling of Fisheries Through Economic, Regulatory, Environmental, and Ecological Linkages
CNH:合作研究:通过经济、监管、环境和生态联系实现渔业的直接和间接耦合
  • 批准号:
    0709518
  • 财政年份:
    2007
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Standard Grant
ITR: A Computational Framework for Observational Science: Data Assimilation Methods and their Application for Understanding North Atlantic Zooplankton Dynamics.
ITR:观测科学的计算框架:数据同化方法及其在理解北大西洋浮游动物动力学中的应用。
  • 批准号:
    0732317
  • 财政年份:
    2007
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CRII: OAC: A Multi-fidelity Computational Framework for Discovering Governing Equations Under Uncertainty
CRII:OAC:用于发现不确定性下控制方程的多保真度计算框架
  • 批准号:
    2348495
  • 财政年份:
    2024
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Standard Grant
A Neural and Computational Framework of the Effort Paradox
努力悖论的神经和计算框架
  • 批准号:
    EP/Y014561/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Research Grant
CAREER: A multi-scale and hierarchical computational framework to model III-nitride devices operating in the near-terahertz regime
职业:多尺度和分层计算框架,用于模拟在近太赫兹区域运行的 III 族氮化物器件
  • 批准号:
    2237663
  • 财政年份:
    2023
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Continuing Grant
Developing an Experimental and Computational Framework for Studying Neural Representations of Tactile Motion on the Hand
开发用于研究手部触觉运动神经表征的实验和计算框架
  • 批准号:
    10732095
  • 财政年份:
    2023
  • 资助金额:
    $ 47.85万
  • 项目类别:
CRII: OAC: A Computational Framework for Studying Transport Phenomena in Complex Networks: From Biological Towards Sustainable and Resilient Engineering Networks
CRII:OAC:研究复杂网络中传输现象的计算框架:从生物网络到可持续和弹性工程网络
  • 批准号:
    2349122
  • 财政年份:
    2023
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Standard Grant
Alternative protein sources: growing the next generation computational modelling framework
替代蛋白质来源:发展下一代计算模型框架
  • 批准号:
    2886049
  • 财政年份:
    2023
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Studentship
Collaborative Research: Frameworks: A multi-fidelity computational framework for vascular mechanobiology in SimVascular
合作研究:框架:SimVasulous 中血管力学生物学的多保真度计算框架
  • 批准号:
    2310910
  • 财政年份:
    2023
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Standard Grant
A New Computational Framework for Superior Image Reconstruction in Limited Data Quantitative Photoacoustic Tomography
有限数据定量光声断层扫描中卓越图像重建的新计算框架
  • 批准号:
    2309491
  • 财政年份:
    2023
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: A multi-fidelity computational framework for vascular mechanobiology in SimVascular
合作研究:框架:SimVasulous 中血管力学生物学的多保真度计算框架
  • 批准号:
    2310909
  • 财政年份:
    2023
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Standard Grant
CAREER: Probabilistic Framework for Self-Supervised, Data-Driven Computational Imaging
职业:自我监督、数据驱动的计算成像的概率框架
  • 批准号:
    2236796
  • 财政年份:
    2023
  • 资助金额:
    $ 47.85万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了