Econometric Volatility Measurement, Modeling, and Forecasting
计量经济学波动率测量、建模和预测
基本信息
- 批准号:0317720
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-08-01 至 2007-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Prop ID: 0317720 P I: Diebold, Francis X. Organization: University of Pennsylvania Title: Econometric Volatility Measurement, Modeling, and ForecastingThis research both deepens and broadens the scientific tools available for volatility measurement, modeling, and forecasting in economics. Both theoretically and empirically, it extends and significantly completes the research program on second generation volatility models developed and popularized by the investigator and his coauthors. The intellectual merit of the work is high, as the problems addressed, which have eluded solution in the volatility literature for nearly two decades, are widely acknowledged to be simultaneously highly challenging and crucially important to the full development of the literature. The broader impacts of the work are equally high, as it focuses throughout on eliminating the gaps between the available tools and those needed by the large communities of practitioners in government, policy organizations, and industry.Intellectual Merit: By any measure, the measurement, modeling, and forecasting of volatility has been one of the most active and successful areas of time-series econometric research areas in the past twenty years. However, several of the most challenging and important problems remain unresolved, including how to (1) deal with pollution of volatility estimates by market microstructure noise, (2) deal with the very high-dimensional multivariate data often relevant in practice, and (3) understand conditional variance dynamics in their relation (or lack thereof) to conditional mean dynamics in general, and market timing ability in particular. Diebold's work contributes directly to their solution by constructing and evaluating (1) filtering methods for attenuating the deleterious effects of market microstructure noise on volatility estimates, (2) a latent-factor framework for volatility measurement, modeling, and forecasting in high-dimensional situations, and (3) a framework for understanding the links among conditional mean dynamics, conditional variance dynamics, and market movements. The work extends both theoretical and empirical econometrics frontiers, pushing forward the new theory of empirical quadratic variation for special semi-martingales, the new empirics of high-frequency modeling, and crucially, their intersection.Broader Impacts: The broader impacts of the project are substantial and several-fold. First, it will contribute directly to teaching and learning via the investigator's mentoring and collaborating with graduate students. Second, it will reach out to underrepresented groups via broad web-based dissemination of all research results. Third, it will enhance infrastructure for research and education by establishing a variety of collaborations: between disciplines (by deepening our understanding of the macroeconomics / financial economics interface as related to volatility), between researchers and nations (by utilizing national and international coauthorships and joint projects), and between academia and other communities including government, policy organizations and industry (by facilitating and accelerating knowledge transfer from academia). This research will also significantly push volatility measurement, modeling, and forecasting toward routine application, benefiting society via improved risk management, asset pricing, and asset allocation, which in turn improve the general functioning of financial markets and the macroeconomy.
提案 ID:0317720 P I:Diebold,Francis X。组织:宾夕法尼亚大学标题:计量经济波动率测量、建模和预测这项研究既深化又拓宽了经济学中可用于波动率测量、建模和预测的科学工具。 无论是在理论上还是在实证上,它都扩展并显着地完成了研究者及其合著者开发和推广的第二代波动率模型的研究计划。 这项工作的学术价值很高,因为人们普遍认为,波动性文献中近二十年来一直未能解决的问题,同时具有高度挑战性,而且对文献的全面发展至关重要。 这项工作的更广泛影响也同样高,因为它始终致力于消除可用工具与政府、政策组织和行业中大型从业者社区所需的工具之间的差距。 智力价值:无论以何种标准衡量,波动性的测量、建模和预测都是过去二十年时间序列计量经济学研究领域中最活跃和最成功的领域之一。 然而,几个最具挑战性和最重要的问题仍未解决,包括如何(1)处理市场微观结构噪声对波动率估计的污染,(2)处理实践中经常相关的极高维多元数据,以及(3)理解条件方差动态与一般条件均值动态的关系(或缺乏关系),特别是市场择时能力。 迪堡的工作通过构建和评估(1)用于减弱市场微观结构噪声对波动性估计的有害影响的过滤方法,(2)用于高维情况下波动性测量、建模和预测的潜在因素框架,以及(3)用于理解条件均值动态、条件方差动态和市场变动之间联系的框架,为他们的解决方案做出了直接贡献。 这项工作扩展了理论和实证计量经济学的前沿,推动了特殊半鞅的经验二次变分的新理论、高频建模的新经验,以及最重要的是它们的交叉点。 更广泛的影响:该项目的更广泛影响是巨大的、多方面的。 首先,它将通过研究者的指导和与研究生的合作直接促进教学和学习。 其次,它将通过基于网络的广泛传播所有研究成果来接触代表性不足的群体。 第三,它将通过建立各种合作来加强研究和教育基础设施:学科之间(通过加深我们对与波动性相关的宏观经济学/金融经济学界面的理解),研究人员和国家之间(通过利用国内和国际合着和联合项目),以及学术界和其他社区(包括政府、政策组织和工业界)之间(通过促进和加速学术界的知识转移)。 这项研究还将显着推动波动性测量、建模和预测走向常规应用,通过改进风险管理、资产定价和资产配置造福社会,从而改善金融市场和宏观经济的整体运作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francis Diebold其他文献
Francis Diebold的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francis Diebold', 18)}}的其他基金
Generalized Bayesian Estimation, Forecasting, and Policy Analysis in Dynamic Stochastic General Equilibrium Macroeconomic Models
动态随机一般均衡宏观经济模型中的广义贝叶斯估计、预测和政策分析
- 批准号:
0617803 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Continuing Grant
Forecasts and Forecasting Models: Prediction, Evaluation, Estimation, and Selection Using the Relevant Loss Function
预测和预测模型:使用相关损失函数进行预测、评估、估计和选择
- 批准号:
9520966 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Continuing grant
Modeling and Forecasting Economic Time Series
经济时间序列建模与预测
- 批准号:
9210846 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Continuing grant
相似国自然基金
基于Volatility Basis-set方法对上海大气二次有机气溶胶生成的模拟
- 批准号:41105102
- 批准年份:2011
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The Impacts of Predictable Income Volatility and Income Risk on Economic Outcomes and Behaviors
可预测的收入波动和收入风险对经济成果和行为的影响
- 批准号:
2242588 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Understanding the Effects of Land Hydrology, Water Volatility, and Rotation Rate on Clouds, Climate, and Circulation in a Hierarchy of Models
了解模型层次结构中陆地水文、水波动和自转速率对云、气候和环流的影响
- 批准号:
2310364 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Three Topics in Stochastic Analysis: Kyle's model, Systems of BSDEs and Superrough volatility
随机分析的三个主题:凯尔模型、倒向随机微分方程系统和超粗糙波动性
- 批准号:
2307729 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Quantifying the cognitive processes supporting computations of stochasticity and volatility in humans
量化支持人类随机性和波动性计算的认知过程
- 批准号:
10732422 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Price Discovery in Equity and Volatility Futures for Trading and Hedging
用于交易和对冲的股票和波动率期货的价格发现
- 批准号:
DP230101472 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery Projects
LOSS-SAMPLER: Tools for quantifying and managing unseen volatility in CER portfolios
LOSS-SAMPLER:用于量化和管理 CER 投资组合中未见波动的工具
- 批准号:
10057920 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Small Business Research Initiative
Topics on discrete-time stochastic volatility models with applications in finance and insurance
离散时间随机波动率模型及其在金融和保险中的应用主题
- 批准号:
RGPIN-2018-04746 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
LOSS-SAMPLER: A tool for identifying unseen volatility in present and future Climate and Environmental Risk (CER) portfolios
LOSS-SAMPLER:用于识别当前和未来气候和环境风险 (CER) 投资组合中未见波动的工具
- 批准号:
10030979 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Small Business Research Initiative
Digitalising the purchase of Feed, Fuel and Fertiliser for dairy farmers to help manage price volatility
将奶农饲料、燃料和肥料的采购数字化,以帮助管理价格波动
- 批准号:
10046812 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant for R&D
Multivariate Stochastic Volatility Models for High-dimensional and High Frequency Data
高维高频数据的多元随机波动率模型
- 批准号:
22K01429 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)